A wqb-number, or B-number for short, is a non-negative integer whose decimal form contains the sub- string "13" and can be divided by 13. For example, 130 and 2613 are wqb-numbers, but 143 and 2639 are not. Your task is to calculate how many wqb-numbers from 1 to n for a given integer n.

InputProcess till EOF. In each line, there is one positive integer n(1 <= n <= 1000000000).OutputPrint each answer in a single line.Sample Input

13
100
200
1000

Sample Output

1
1
2
2

心里没有点13数吗,233?

第一次提交代码:

#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
#define LL long long
const int N=;
int dp[N][N][][][],n;
int a[N],cnt;
void _divide(LL v){
cnt=;
while(v){a[++cnt]=v%;v/=;}
}
int _dfs(int pos,int Mod,bool limit,bool pre,bool stat)
{
if(pos==) return stat&&!Mod;
int tmp=;
if(!limit&&dp[pos][Mod][limit][pre][stat]) return dp[pos][Mod][limit][pre][stat];
int Up=limit?a[pos]:;
for(int i=;i<=Up;i++)
tmp+=_dfs(pos-,(Mod*+i)%,limit&&i==Up,i==,stat||(pre&&i==));
dp[pos][Mod][limit][pre][stat]=tmp;
return tmp;
}
int main()
{
int i,T;
while(~scanf("%d",&n)){
memset(dp,,sizeof(dp));
_divide(n);
printf("%d\n",_dfs(cnt,,true,false,false));
}
return ;
}

 时间长,是因为memset次数太多。

优化:去掉memset,加上limit限制

第二次提交代码:

#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
#define LL long long
const int N=;
int dp[N][N][][][],n;
int a[N],cnt;
void _divide(LL v){
cnt=;
while(v){a[++cnt]=v%;v/=;}
}
int _dfs(int pos,int Mod,bool limit,bool pre,bool stat)
{
if(pos==) return stat&&!Mod;
int tmp=;
if(!limit&&dp[pos][Mod][limit][pre][stat]) return dp[pos][Mod][limit][pre][stat];
int Up=limit?a[pos]:;
for(int i=;i<=Up;i++)
tmp+=_dfs(pos-,(Mod*+i)%,limit&&i==Up,i==,stat||(pre&&i==));
dp[pos][Mod][limit][pre][stat]=tmp;
return tmp;
}
int main()
{
int i,T;
while(~scanf("%d",&n)){
_divide(n);
printf("%d\n",_dfs(cnt,,true,false,false));
}
return ;
}

HDU3652 B-number 数位DP第二题的更多相关文章

  1. 多校5 HDU5787 K-wolf Number 数位DP

    // 多校5 HDU5787 K-wolf Number 数位DP // dp[pos][a][b][c][d][f] 当前在pos,前四个数分别是a b c d // f 用作标记,当现在枚举的数小 ...

  2. HDU 2089 不要62(数位dp模板题)

    http://acm.hdu.edu.cn/showproblem.php?pid=2089 题意:求区间内不包含4和连续62的数的个数. 思路: 简单的数位dp模板题.给大家推荐一个好的讲解博客.h ...

  3. HDU 3709 Balanced Number (数位DP)

    Balanced Number Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) ...

  4. BNU 13024 . Fi Binary Number 数位dp/fibonacci数列

    B. Fi Binary Number     A Fi-binary number is a number that contains only 0 and 1. It does not conta ...

  5. hdu 5898 odd-even number 数位DP

    传送门:hdu 5898 odd-even number 思路:数位DP,套着数位DP的模板搞一发就可以了不过要注意前导0的处理,dp[pos][pre][status][ze] pos:当前处理的位 ...

  6. codeforces Hill Number 数位dp

    http://www.codeforces.com/gym/100827/attachments Hill Number Time Limits:  5000 MS   Memory Limits: ...

  7. HDU 5787 K-wolf Number 数位DP

    K-wolf Number Problem Description   Alice thinks an integer x is a K-wolf number, if every K adjacen ...

  8. Fzu2109 Mountain Number 数位dp

    Accept: 189    Submit: 461Time Limit: 1000 mSec    Memory Limit : 32768 KB  Problem Description One ...

  9. HDU5787 K-wolf Number 数位dp

    分析:赛场上也知道是裸的数位dp,但是无奈刷数位dp题刷的太少了,并不能写出来 一点感想:赛后补题,看了题解的map记录状态,一脸蒙逼,也是非常的不爽,然后想看别人写的,不是递归就是写的比较乱 而且我 ...

随机推荐

  1. Faster-rcnn 配置方法

    Faster-rcnn 在Linux下的配置方法 感谢@邓学长 建立过程: (下载库的时候要按照库readme 进行操作) opencv 的包下载安装,安装教程 用git命令将这个库下载到本地 fas ...

  2. HTTP-API-DESIGN 怎样设计一个合理的 HTTP API (一)

    这个附件的幻灯片是我最近给团队分享关于设计 HTTP API 的时候,结合 这篇 和我们团队历史上的一些错误,总结出来一些适合内部的经验. 简介. 这次分享主要关注以下几部分: HTTP + JSON ...

  3. Grunt Part 1

    Grunt Part 1 Objectives and Outcomes In this exercise, you will learn to use Grunt, the task runner. ...

  4. APP Inventor 基于网络微服务器的即时通信APP

    APP Inventor 基于网络微服务器的即时通信APP 一.总结 一句话总结:(超低配版的QQ,逃~) 1.APP Inventor是什么? google 傻瓜式 编程 手机 app App In ...

  5. spring mvc: 参数方法名称解析器(用参数来解析控制器下的方法)MultiActionController/ParameterMethodNameResolver/ControllerClassNameHandlerMapping

    spring mvc: 参数方法名称解析器(用参数来解析控制器下的方法)MultiActionController/ParameterMethodNameResolver/ControllerClas ...

  6. C++(三十三) — 全局函数、成员函数的区别

    区别: (1)全局函数的参数个数,比局部函数要多一个: (2)二者都可,返回元素.返回引用. class test { public: test(int a, int b) { this->a ...

  7. 搞懂分布式技术19:使用RocketMQ事务消息解决分布式事务

    搞懂分布式技术19:使用RocketMQ事务消息解决分布式事务 初步认识RocketMQ的核心模块 rocketmq模块 rocketmq-broker:接受生产者发来的消息并存储(通过调用rocke ...

  8. Node.js 全栈开发(二)——ES 201x 新语法的使用之基础篇

    在讲 ES 2015 新语法之前,先来说一下为什么叫 ES.JavaScript 是这门语言的名称,它有一个为它制定标准化的组织 European Computer Manufacturers Ass ...

  9. LeetCode OJ:Find Median from Data Stream(找数据流的中数)

    Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...

  10. VS2005 使用体验

    鄙人记性真心不好,看了就忘.此文记录下日常小工具的tips. 1)VS的小番茄: 破解版 Visual.Assist.X.V10.6.1833支持VS2010 VS2008 VS2005 VC6 破解 ...