Front compression

Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)
Total Submission(s): 158    Accepted Submission(s): 63

Problem Description
Front compression is a type of delta encoding compression algorithm whereby common prefixes and their lengths are recorded so that they need not be duplicated. For example:

The size of the input is 43 bytes, while the size of the compressed output is 40. Here, every space and newline is also counted as 1 byte.
Given the input, each line of which is a substring of a long string, what are sizes of it and corresponding compressed output?
 
Input
There are multiple test cases. Process to the End of File.
The first line of each test case is a long string S made up of lowercase letters, whose length doesn't exceed 100,000. The second line contains a integer 1 ≤ N ≤ 100,000, which is the number of lines in the input. Each of the following N lines contains two integers 0 ≤ A < B ≤ length(S), indicating that that line of the input is substring [A, B) of S.
 
Output
For each test case, output the sizes of the input and corresponding compressed output.
 
Sample Input
frcode
2
0 6
0 6
unitedstatesofamerica
3
0 6
0 12
0 21
myxophytamyxopodnabnabbednabbingnabit
6
0 9
9 16
16 19
19 25
25 32
32 37
 
Sample Output
14 12
42 31
43 40
 
Author
Zejun Wu (watashi)
 
Source
 
Recommend
zhuyuanchen520
 

后缀数组随便搞一下就可以了

 /* ***********************************************
Author :kuangbin
Created Time :2013/8/20 13:40:03
File Name :F:\2013ACM练习\2013多校9\1006.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
const int MAXN=;
int t1[MAXN],t2[MAXN],c[MAXN];//求SA数组需要的中间变量,不需要赋值
//待排序的字符串放在s数组中,从s[0]到s[n-1],长度为n,且最大值小于m,
//除s[n-1]外的所有s[i]都大于0,r[n-1]=0
//函数结束以后结果放在sa数组中
bool cmp(int *r,int a,int b,int l)
{
return r[a] == r[b] && r[a+l] == r[b+l];
}
void da(int str[],int sa[],int rank[],int height[],int n,int m)
{
n++;
int i, j, p, *x = t1, *y = t2;
//第一轮基数排序,如果s的最大值很大,可改为快速排序
for(i = ;i < m;i++)c[i] = ;
for(i = ;i < n;i++)c[x[i] = str[i]]++;
for(i = ;i < m;i++)c[i] += c[i-];
for(i = n-;i >= ;i--)sa[--c[x[i]]] = i;
for(j = ;j <= n; j <<= )
{
p = ;
//直接利用sa数组排序第二关键字
for(i = n-j; i < n; i++)y[p++] = i;//后面的j个数第二关键字为空的最小
for(i = ; i < n; i++)if(sa[i] >= j)y[p++] = sa[i] - j;
//这样数组y保存的就是按照第二关键字排序的结果
//基数排序第一关键字
for(i = ; i < m; i++)c[i] = ;
for(i = ; i < n; i++)c[x[y[i]]]++;
for(i = ; i < m;i++)c[i] += c[i-];
for(i = n-; i >= ;i--)sa[--c[x[y[i]]]] = y[i];
//根据sa和x数组计算新的x数组
swap(x,y);
p = ; x[sa[]] = ;
for(i = ;i < n;i++)
x[sa[i]] = cmp(y,sa[i-],sa[i],j)?p-:p++;
if(p >= n)break;
m = p;//下次基数排序的最大值
}
int k = ;
n--;
for(i = ;i <= n;i++)rank[sa[i]] = i;
for(i = ;i < n;i++)
{
if(k)k--;
j = sa[rank[i]-];
while(str[i+k] == str[j+k])k++;
height[rank[i]] = k;
}
}
int rank[MAXN],height[MAXN];
int RMQ[MAXN];
int mm[MAXN];
int best[][MAXN];
void initRMQ(int n)
{
mm[]=-;
for(int i=;i<=n;i++)
mm[i]=((i&(i-))==)?mm[i-]+:mm[i-];
for(int i=;i<=n;i++)best[][i]=i;
for(int i=;i<=mm[n];i++)
for(int j=;j+(<<i)-<=n;j++)
{
int a=best[i-][j];
int b=best[i-][j+(<<(i-))];
if(RMQ[a]<RMQ[b])best[i][j]=a;
else best[i][j]=b;
}
}
int askRMQ(int a,int b)
{
int t;
t=mm[b-a+];
b-=(<<t)-;
a=best[t][a];b=best[t][b];
return RMQ[a]<RMQ[b]?a:b;
}
int lcp(int a,int b)
{
a=rank[a];b=rank[b];
if(a>b)swap(a,b);
return height[askRMQ(a+,b)];
}
char str[MAXN];
int r[MAXN];
int sa[MAXN];
int A[MAXN],B[MAXN];
int calc(int n)
{
if(n == )return ;
int ret = ;
while(n)
{
ret++;
n /= ;
}
return ret;
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
while(scanf("%s",str)==)
{
int n = strlen(str);
for(int i = ;i < n;i++)
r[i] = str[i];
r[n] = ;
da(r,sa,rank,height,n,);
for(int i = ;i <= n;i++)
RMQ[i] = height[i];
initRMQ(n);
int k,u,v;
long long ans1 = , ans2 = ;
scanf("%d",&k);
for(int i = ;i < k;i++)
{
scanf("%d%d",&A[i],&B[i]);
if(i == )
{
ans1 += B[i] - A[i] + ;
ans2 += B[i] - A[i] + ;
continue;
}
int tmp ;
if(A[i]!= A[i-])tmp = lcp(A[i],A[i-]);
else tmp = ;
tmp = min(tmp,B[i]-A[i]);
tmp = min(tmp,B[i-]-A[i-]);
ans1 += B[i] - A[i] + ;
ans2 += B[i] - A[i] - tmp + ;
ans2 += ;
ans2 += calc(tmp);
}
printf("%I64d %I64d\n",ans1,ans2);
}
return ;
}

HDU 4691 Front compression (2013多校9 1006题 后缀数组)的更多相关文章

  1. HDU 4681 String(2013多校8 1006题 DP)

    String Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Subm ...

  2. hdu 4691 Front compression (后缀数组)

    hdu 4691 Front compression 题意:很简单的,就是给一个字符串,然后给出n个区间,输出两个ans,一个是所有区间的长度和,另一个是区间i跟区间i-1的最长公共前缀的长度的数值的 ...

  3. HDU 4671 Backup Plan (2013多校7 1006题 构造)

    Backup Plan Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  4. HDU 4691 Front compression(后缀数组)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4691 题意:给出Input,求出Compressed output.输出各用多少字节. 思路:求后缀数 ...

  5. HDU 4678 Mine (2013多校8 1003题 博弈)

    Mine Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submis ...

  6. HDU 4705 Y (2013多校10,1010题,简单树形DP)

    Y Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submiss ...

  7. HDU 4704 Sum (2013多校10,1009题)

    Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submi ...

  8. HDU 4699 Editor (2013多校10,1004题)

    Editor Time Limit: 3000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Su ...

  9. HDU 4696 Answers (2013多校10,1001题 )

    Answers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total S ...

随机推荐

  1. 【转载】WebDriver(C#)之十点使用心得

    使用Selenium WebDriver驱动浏览器测试的过程中多多少少会遇到一些折腾人的问题,总结了一部分,做下分享. 一.隐藏元素处理(element not visible) 使用WebDrive ...

  2. openjudge-NOI 2.6-2985 数字组合

    题目链接:http://noi.openjudge.cn/ch0206/2985/ 题解: 跟背包问题有点相似,暂且算背包型DP吧,虽然是一道递推题…… fj表示和为j时的结果,得: 即为j减去每一个 ...

  3. [转载]理解Tomcat的Classpath-常见问题以及如何解决

    摘自: http://www.linuxidc.com/Linux/2011-08/41684.htm 在很多Apache Tomcat用户论坛,一个问题经常被提出,那就是如何配置Tomcat的cla ...

  4. 端口扫描———nmap

    nmap教程之nmap命令使用示例(nmap使用方法) 浏览:8268 | 更新:2014-03-29 17:23 Nmap是一款网络扫描和主机检测的非常有用的工具.Nmap是不局限于仅仅收集信息和枚 ...

  5. POJ 2349 Arctic Network(最小生成树+求第k大边)

    题目链接:http://poj.org/problem?id=2349 题目大意:有n个前哨,和s个卫星通讯装置,任何两个装了卫星通讯装置的前哨都可以通过卫星进行通信,而不管他们的位置. 否则,只有两 ...

  6. HTML 禁止显示input默认提示信息

    看问题 html代码 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&quo ...

  7. JAVA(一)变量

    public static void main(String[] args) { // TODO Auto-generated method stub System.out.println(" ...

  8. 【51nod】1340 地铁环线

    今天头非常疼,躲在家里没去机房 反正都要颓废了,然后花了一上午研究了一下这道神题怎么做-- 题解 首先我们发现,如果我们设\(dis[i]\)为从\(0\)节点走到\(i\)节点的距离 那么题目中给出 ...

  9. php抓取一个页面的图片

    思路: 1.找到一个页面 2.正则过滤所有的img 3.正则过滤出所有的src的属性 4.获取链接信息,写入文件 file_get_contents(), file_put_contents() 5. ...

  10. 湖南大学ACM程序设计新生杯大赛(同步赛)I - Piglet treasure hunt Series 1

    题目描述 Once there was a pig, which was very fond of treasure hunting. The treasure hunt is risky, and ...