欢迎大家来到贝蒂大讲堂

养成好习惯,先赞后看哦~

所属专栏:C语言学习

贝蒂的主页:Betty‘s blog

1. 指针与地址

1.1 概念

我们都知道计算机的数据必须存储在内存里,为了正确地访问这些数据,必须为每个数据都编上号码,就像门牌号、身份证号一样,每个编号是唯一的,根据编号可以准确地找到某个数据。而这些编号我们就将其称为地址或者指针

1.2 指针变量

数据在内存中的地址称为指针,如果一个变量存储了一份数据的指针(地址),我们就称它为指针变量

那我们如何使用指针变量呢?

  1. datatype *name;

*表示这是一个指针变量,datatype表示该指针变量所指向的数据的类型

例如:

int* p1;//指向一个整型的指针
char* p2;//指向一个字符的指针
float* p3;//指向一个单精度浮点数的指针
double* p4;//指向一个双精度浮点数的指针

1.3 &和*

我们早在学习scanf时候就用过取地址符&,它是将某个变量的地址取出来,而解引用*的意思就是通过某个地址找到该地址存储的变量。可能解释起来比较抽象,我们可以通过一个不恰当的例子形象说明一下。

首先我们可以得到如下几个关系:

	int a = 1;//第一个客户,&a为0x00000001
int b = 2;//第二个客户,&b为0x00000002
int c = 3;//第三个客户,&c为0x00000003

然后我们可以通过指针变量把他们地址存储进去

	int* pa = &a;//把a的地址存进去
int* pb = &b;//把b的地址存进去
int* pc = &c;//把c的地址存进去

在酒店中,我们可以通过门牌号准确找到每个客户。同理,我们也可以通过每个地址准确找到每个变量。

	printf("a=%db=%dc=%d", *pa, *pb, *pc);//通过*解引用地址找到对应的值

输出结果 a=1 b=2 c=3

并且我们可以通过指针变量进行赋值。

*pa = 4;
*pb = 5;
*pc = 6;
printf("a=%d b=%d c=%d\n", *pa, *pb, *pc);

输出结果:a=4 b=5 c=6

1.4 void*指针和NULL

(1)void*是一种特殊的指针类型,它可以指向任意类型的数据,就是说可以用任意类型的指针对 void 指针赋值。

void*p1;
int*p2;
p1=p2;//这是被允许的
  • 但是却不能把void*指针赋值给任意指针类型,也不能直接对其解引用
void*p1;
int *p2;
p2=p1;//不能这样赋值
*p1//不能直接对void*解引用

(2)NULL 是C语⾔中定义的⼀个标识符常量,值是0,0也是地址,这个地址是⽆法使⽤的,读写该地址会报错

int*p=NULL;//初始化指针

1.5 指针变量的大小

我们知道,现在常见的计算机分为32位机器64位机器。32位机器假设有32根地址总线,每根地址线出来的电信号转换成数字信号后是1或者0,那我们把32根地址线产⽣的2进制序列当做⼀个地址,那么⼀个地址就是32个bit位,需要4个字节才能存储。同理,64位机器需要8个字节才能存储。

我们可以通过以下代码来验证一下。

int main()
{
printf("%zd ", sizeof(char*));
printf("%zd ", sizeof(short*));
printf("%zd ", sizeof(int*));
printf("%zd ", sizeof(double*));
return 0;
}

输出结果:

32位机器:4 4 4 4

64位机器:8 8 8 8

2. 指针的基本运算

2.1 指针+-整数

我们先观察一下如下代码的地址变化

#include <stdio.h>
int main()
{
int n = 10;
char* p1 = (char*)&n;//将int*强转为char*
int* p2 = &n;
printf("%p\n", &n);
printf("%p\n", p1);
printf("%p\n", p1 + 1);//p1向后移动一位
printf("%p\n", p2);
printf("%p\n", p2 + 1);//p2向后移动一位
return 0;
}

输出 :

&n=005DF8D4

p1=005DF8D4

p1+1=005DF8D5

p2=005DF8D4

p2+1=005DF8D8

我们可以看出, char* 类型的指针变量+1跳过1个字节, int* 类型的指针变量+1跳过了4个字节。由此我们得出结论:指针的类型决定了指针向前或者向后⾛⼀步有多⼤(距离)。

  • 因为每次代码运行时,系统都会重新分配内存,所以输出结果每次都不会一样,但是规律是一样的

我们知道数组在内存中是连续存储的(地址由低到高),所以我们只需要只要首元素的地址就能找到数组所有元素的地址,而一维数组的数组名恰恰就是我们首元素的地址。

 假设有数组int arr[10]={1,2,3,4,5,6,7,8,9,10}
arr 1 2 3 4 5 6 7 8 9 10
下标 0 1 2 3 4 5 6 7 8 9

那我们如何通过指针访问每个元素呢?

代码参考如下:

#include <stdio.h>
int main()
{
int arr[] = { 1,2,3,4,5,6,7,8,9,10 };
int* p = &arr[0];//&arr[0]=arr
int i = 0;
int sz = sizeof(arr) / sizeof(arr[0]);//计算数组元素个数
for (i = 0; i < sz; i++)
{
printf("%d ", *(p + i));//因为数组元素连续存储,所以可以通过+-整数找到之后元素
}
return 0;
}

输出结果:1 2 3 4 5 6 7 8 9 10

2.2 指针-指针

指针-指针其实是指在同一空间内,两个指针之间的元素个数

知道这点之后,我们可不可以自己实现一个字符串库函数strlen()呢?

思路如下:

思路:首先定义两个指针p1,p2,让两个指针指向首元素,然后让一个指针p2循环++,直到指向‘\0’就停止,最后返回p2-p1,就能得到字符串的长度

代码如下:

int my_strlen(char* p1)
{
char* p2 = p1;//使两个指针都指向首元素
while (*p2)
{
p2++;
}
return p2 - p1;//返回两指针直接的元素的个数就是其长度
}
int main()
{
char arr[] = "abcdef";
int len = my_strlen(arr);//计算arr字符串的长度
printf("%d\n", len);
return 0;
}

2.3 指针的关系运算

我们知道了指针变量本质是存放的地址,而地址本质就是十六进制的整数,所以指针变量也是可以比较大小的

代码示例:

#include <stdio.h>
int main()
{
int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };
int* p = &arr[0];
int i = 0;
int sz = sizeof(arr) / sizeof(arr[0]);
while (p < arr + sz) //指针的⼤⼩⽐较
{
printf("%d ", *p);//打印数组每个元素
p++;
}
return 0;
}

3. const修饰

我们知道变量是可以改变的,但是在有些场景下,我们不希望变量改变,那我们该怎么办呢?这就是我们接下来要讲的const的作用啦。

3.1 const修饰变量

简单来说,经过const修饰的变量,可以当做一个常量,而常量是不能改变的。

	int a = 1;//a可修改的
const int b = 2;
b=3;//b不可修改的

但是可以通过指针间接修改.

代码如下:

int main()
{
const int b = 2;
int* p = &b;
*p = 3;//通过指针间接修改
return 0;
}

3.2 const修饰指针

我们知道const的作用后,就可以看看下面几段代码。

	int a = 10;
const int* p = &a;
*p = 20;//是否可以
p = p + 1;//是否可以

通过测试我们发现,*p无法改变成20,但是p可以改变成p+1.

那如果把const调换一下位置,又会出现什么情况呢~

	int a = 10;
int* const p = &a;
*p = 20;//是否可以
p = p + 1;//是否可以

再次测试之后我们发现,*p可以被赋值为20,但是p不能赋值为p+1了

通过上述测试,我们大致可以总结出两个结论。

• const如果放在的左边,修饰的是指针指向的内容,保证指针指向的内容不能通过指针来改变。但是指针变量本⾝的内容可变。

• const如果放在*的右边,修饰的是指针变量本⾝,保证了指针变量的内容不能修改,但是指针指向的内容,可以通过指针改变。

4. assert断言

assert是一个宏,它的头文件为<assert.h>,⽤于在运⾏时确保程序符合指定条件,如果不符合,就报错终⽌运⾏。这个宏常常被称为“断⾔”。

举一个简单的例子:

assert(a>0);
  1. 如果a的确大于0,assert判断为真,就会通过。

  2. 如果a不大于0,assert判断为假,就会报错。

所以assert常常用于检查空指针问题,以防止程序因为空指针的问题而出错。

int *p=NULL;
assert(p);//空指针是0,0为假,就会报错

5. 传值调用与传址调用

5.1 传值调用

我们前面学习函数时候,遇到过这样一段代码。

#include<stdio.h>
void swap(int x, int y)//返回类型为void表示不返回值
{
int temp = 0;//定义一个临时变量
temp = x;//把x的值赋给temp
x = y;//把y的值赋给x
y = temp;//把temp的值赋给y,完成交换操作
}
int main()
{
int a = 0;
int b = 0;
scanf("%d %d", &a, &b);
printf("交换前:a=%d,b=%d\n", a, b);
swap(a, b);//交换函数
printf("交换后:a=%d,b=%d\n", a, b);
return 0;
}

输入:3 5

输出:交换后a=3 ,b=5

为什么两个值并没有交换呢,这是因为形参只是实参的一份临时拷贝,对形参改变,根本不会改变实参。如果忘记的同学可以再去温习一下贝蒂的函数小课堂

5.2 传址调用

那我们想在函数中改变实参的值,那又该如何改变呢?

其实很简单,我们学了指针,知道可以通过地址间接访问该变量的值,所以我们只需要把地址传给函数,在函数中通过地址访问实参,并进行交换。

代码如下:

#include<stdio.h>
void swap(int*x, int*y)//通过指针变量接受地址
{
int temp = 0;//定义一个临时变量
temp = *x;//把*x的值赋给temp
*x = *y;//把*y的值赋给*x
*y = temp;//把temp的值赋给*y,完成交换操作
}
int main()
{
int a = 0;
int b = 0;
scanf("%d %d", &a, &b);
printf("交换前:a=%d,b=%d\n", a, b);
swap(&a, &b);//将地址传给函数
printf("交换后:a=%d,b=%d\n", a, b);
return 0;
}

6. 野指针

概念:野指针就是指针指向的位置是不可知的(随机的、不正确的、没有明确限制的)

6.1 野指针成因

(1)指针未初始化

#include <stdio.h>
int main()
{
int* p; //局部变量指针未初始化,默认为随机值
*p = 20;
return 0;
}

因为p是随机值,所以对p解引用,系统无法通过p的地址找到对应的空间,所以出错造成野指针

(2)数组越界访问

#include <stdio.h>
int main()
{
int arr[10] = { 0 };
int i = 0;
for (i = 0; i < 11; i++)
{
//数组下标是0到9
printf("%d ", *(arr + i));
}
return 0;
}

  • 一般出现这种较大的随机值,一般都是数组越界访问

(3)指针指向空间释放

#include <stdio.h>
int* test()
{
int n = 10;
return &n;//返回n的地址
}
int main()
{
int* p = test();//用p接受n的地址
printf("%d\n", *p);//打印出n的值
return 0;
}

这段代码乍一看,好像并没有什么问题,但是大家在学习函数的时候知道,在函数中定义的变量是临时变量,一旦出了作用域就会销毁。

一旦销毁,系统就无法访问该空间,而通过指针我们还可以访问该空间,这就造成了冲突,所以出错,造成野指针。

6.2 解决方法

(1) 初始化

NULL 是C语⾔中定义的⼀个标识符常量,值是0,0也是地址,这个地址是⽆法使⽤的,读写该地址会报错。如下是NULL在编译器中的定义:

ifdef __cplusplus

define NULL 0

else

define NULL ((void *)0)

endif

#include <stdio.h>
int main()
{
int* p=NULL;//用空指针初始化,让其有指向位置
//*p = 20;NULL地址不能读写
return 0;
}

(2) 小心越界访问

我们在使用数组时候,一定要对数组的元素个数有一个清晰的把控,不然就很容易出现越界访问的情况。

(3) 不能返回临时变量的地址

临时变量出了作用域就会销毁,系统会回收该空间,所以我们要尽量避免指针指向已经销毁的空间,尤其在函数中,不能返回临时变量的地址。

掌握C语言指针,轻松解锁代码高效性与灵活性的更多相关文章

  1. C语言指针-从底层原理到花式技巧,用图文和代码帮你讲解透彻

    这是道哥的第014篇原创 目录 一.前言 二.变量与指针的本质 1. 内存地址 2. 32位与64位系统 3. 变量 4. 指针变量 5. 操作指针变量 5.1 指针变量自身的值 5.2 获取指针变量 ...

  2. (转载)c语言指针学习

    前言 近期俄罗斯的陨石.四月的血月.五月北京的飞雪以及天朝各种血腥和混乱,给人一种不详的预感.佛祖说的末法时期,五浊恶世 ,十恶之世,人再无心法约束,道德沦丧,和现在正好吻合.尤其是在天朝,空气,水, ...

  3. C语言指针【转】

    一.C语言指针的概念 在计算机中,所有的数据都是存放在存储器中的.一般把存储器中的一个字节称为一个内存单元,不同的数据类型所占用的内存单元数不等,如整型量占2个单元,字符量占1个单元等,在前面已有详细 ...

  4. c语言指针学习【转】

    前言 近期俄罗斯的陨石.四月的血月.五月北京的飞雪以及天朝各种血腥和混乱,给人一种不详的预感.佛祖说的末法时期,五浊恶世 ,十恶之世,人再无心法约束,道德沦丧,和现在正好吻合.尤其是在天朝,空气,水, ...

  5. Tinyhttpd - 超轻量型Http Server,使用C语言开发,全部代码只有502行(包括注释),附带一个简单的Client(Qt也有很多第三方HTTP类)

    - 2. Tinyhttpd tinyhttpd是一个超轻量型Http Server,使用C语言开发,全部代码只有502行(包括注释),附带一个简单的Client,可以通过阅读这段代码理解一个 Htt ...

  6. 深入理解C语言 - 指针详解

    一.什么是指针 C语言里,变量存放在内存中,而内存其实就是一组有序字节组成的数组,每个字节有唯一的内存地址.CPU 通过内存寻址对存储在内存中的某个指定数据对象的地址进行定位.这里,数据对象是指存储在 ...

  7. C语言指针转换为intptr_t类型

    1.前言 今天在看代码时,发现将之一个指针赋值给一个intptr_t类型的变量.由于之前没有见过intptr_t这样数据类型,凭感觉认为intptr_t是int类型的指针.感觉很奇怪,为何要将一个指针 ...

  8. 不可或缺 Windows Native (7) - C 语言: 指针

    [源码下载] 不可或缺 Windows Native (7) - C 语言: 指针 作者:webabcd 介绍不可或缺 Windows Native 之 C 语言 指针 示例cPointer.h #i ...

  9. C语言指针学习

    C语言学过好久了,对于其中的指针却没有非常明确的认识,趁着有机会来好好学习一下,总结一下学过的知识,知识来自C语言指针详解一文 一:指针的概念 指针是一个特殊的变量,里面存储的数值是内存里的一个地址. ...

  10. 关于C语言指针的问题

    在学习关于C语言指针的时候,发现这样一个问题,代码如下: #include<stdio.h> #include<stdlib.h> #include<string.h&g ...

随机推荐

  1. [转帖]服务器稳定性测试-LTP压力测试方法及工具下载

    简介 LTP(LinuxTest Project)是SGI.IBM.OSDL和Bull合作的项目,目的是为开源社区提供一个测试套件,用来验证Linux系统可靠性.健壮性和稳定性.LTP测试套件是测试L ...

  2. [转帖]jvm学习三-MAT内存分析工具的使用

    目录 1 模拟内存溢出程序 1.1 jvm配置 1.2 测试代码 2 MAT工具进行内存分析 2.1 大纲介绍 2.2 Histogram视图介绍 2.3 Leak Suspects视图介绍 2.4 ...

  3. [转帖]使用Linux命令快速查看某一行

      原创:打码日记(微信公众号ID:codelogs),欢迎分享,转载请保留出处. 简介# 当年,我还是Linux菜鸟的时候,就在简历上写着精通Linux命令了,而当面试官问我"如何快速查看 ...

  4. alertmanager远程配置

    用于远程配置alertmanager的rules. 主要步骤为: 通过proxy更新mount的告警规则文件 重启容器 # ./client -h Note: Only for update exis ...

  5. vue中v-model修饰符的使用和组件使用v-model

    1.lazy 修饰器 lazy修饰器在input框中的表现效果是: 当你失去焦点后值才会跟新. 它的跟新时机是失去焦点后 这个修饰器在项目中运用的场景较少 <template> <d ...

  6. C# 理解委托与事件(烧水壶例子)

    引言 委托 和 事件在 .Net Framework中的应用非常广泛,然而,较好地理解委托和事件对很多接触C#时间不长的人来说并不容易.它们就像是一道槛儿,过了这个槛的人,觉得真是太容易了,而没有过去 ...

  7. 每日一库:GORM简介

    GORM(Go Object-Relational Mapping)是一个用于Go语言的ORM库,它提供了一种简单.优雅的方式来操作数据库.GORM支持多种数据库,包括MySQL.PostgreSQL ...

  8. Spring源码之XML文件中Bean标签的解析1

    读取XML文件,创建对象 xml文件里包含Bean的信息,为了避免多次IO,需要一次性读取xml文件中所有bean信息,加入到Spring工厂. 读取配置文件 new ClassPathResourc ...

  9. 手撕Vue-实现将数据代理到Vue实例

    前言 经过上一篇文章的学习,完成了 v-on 指令的实现,接下来我们来实现将数据代理到 Vue 实例上. 为什么要完成这个功能呢?因为我们在使用 Vue 的时候,可以直接通过 this.xxx 的方式 ...

  10. 【3】opencv_contrib 4.3.0库配置+opencv安装

    相关文章: [1]windows下安装OpenCV(4.3)+VS2017安装+opencv_contrib4.3.0配置 [2]Visual Studio 2017同时配置OpenCV2.4 以及O ...