简介:在3月2日的阿里云开源 PolarDB 企业级架构发布会上,阿里云 PolarDB 内核技术专家北侠带来了主题为《PolarDB 总体架构设计和企业级特性》的精彩演讲。

在3月2日的阿里云开源 PolarDB 企业级架构发布会上,阿里云 PolarDB 内核技术专家

北侠带来了主题为《PolarDB 总体架构设计和企业级特性》的精彩演讲。主要分享了存储计算分离架构、HTAP架构、节点高可用架构是PolarDB 可支持的三种架构,PolarDB还具备可用性、高性能、安全的企业级特性。并对PolarDB 总体架构和企业级特性进行展开分析。

直播回顾视频:开源PolarDB企业级架构重磅发布-阿里云

PDF下载: 文件下载-阿里云开发者社区

以下根据发布会演讲视频内容整理:

PolarDB 是阿里云自主研发的云原生数据库,它的源代码已经全部开源(源码仓库地址:https://github.com/ApsaraDB/PolarDB-for-PostgreSQL )。下面将为大家详细解读开源 PolarDB 的总体架构和企业级的特性。

一、PolarDB总体架构设计

PolarDB 的基础架构是云原生架构。传统数据库由主库、备库和一个 Standby节点构成,主库复制redo日志到备库。传统数据库的架构存在以下四个问题:

① 扩展性差。增加节点的时候需要先将数据完整复制,花费的时间通常是小时级别甚至更长。

② 可靠性差。主库和备库之间需要采用同步复制,会导致性能下降大概 20% 以上;如果采用异步复制,则会发生数据丢失的风险。

③ 可用性差。主库发生了故障后, HA 会切换到备库。新的备库需要回放大量 redo 日志才能进入可服务的状态,该过程可能需要分钟级别的耗时。

④ 成本高。存储成本会随着节点数目的增加而呈线性增加,此外还需要预留一些资源。

为了彻底解决以上问题,PolarDB提出了云原生的架构,将计算和存储资源解耦。

上图左侧是传统的数据库,它的 CPU 、内存、存储都在一台服务器上,称作计算存储一体化。右侧是 PolarDB 的架构,它分成了计算节点和存储节点两种类型的节点。数据存储在由存储节点构成的存储池里,各个计算节点通过高速网络读取存储池中的数据。

计算存储分离的架构的优势在于以下几个方面:

① 极致的、弹性的扩展能力:存储和计算能够分别独立地扩容。

② 降低存储成本:那么计算集群扩展到多少个,数据始终只有一份。

③ 易用性:具备分布式的优势和单机数据库的体感,因为每个计算节点都能看到所有数据。对于用户来说,任何一个计算节点就相当于是一个单机数据库。

④ 可靠性比较高:底层共享存储提供了三副本以及秒级快照的功能,为数据库的备份提供了比较便捷的方式。

PolarDB 不仅设计研发了计算存储分离的架构,还在在数据库的模块栈上进行了大量优化。

在事务层,实现了 CSN 快照来代替传统的事务快照;在日志层,实现了 LogIndex 这样核心的数据结构,解决了在计算存储分离架构下遇到的特有的过去页面以及未来页面的数据问题,同时实现了延迟回放和并行回放;在缓存层,实现了常驻的 BufferPool 和多版本页面;在存储层,实现了 DirectIO 模型页面的预读和预扩展的能力。

此外,用户还经常需要对 TP 事务的数据进行复杂的分析查询,比如在夜里做汇总报表和对账。此类查询一般都是一些非常复杂的 SQL ,但并发不高,是典型的 OLAP 场景。

最初 PolarDB 的计算存储分离架构在处理这类复杂的 SQL 时,只能由单个计算节点来计算,无法发挥出计算集群的整体算力,同时也没有办法发挥出存储池大带宽的特性。

当时业界的解决方案通常有两类:

① 在原有的 TP 系统外面部署一套 AP 系统,将 TP 的事务数据通过日志导入到 AP 系统。此方案存在的问题在于两个系统之间的延迟比较高,会导致数据的新鲜度不高。另外,部署一套独立的 AP 系统会导致存储和运维的成本增加。

② 在原有的 TP 系统上就地执行 AP 查询,但这势必会造成 TP 和 AP 两种业务互相影响。另外, AP 系统也没有办法做弹性的扩展。

因此, PolarDB 研发了一个基于共享存储的分布式计算引擎,这也是业界首创的解决方案。该方案具备以下优势:

① 它是一个一体化的存储方案,TP 和 AP 共用一份存储在共享存储上数据。相比于两套系统,它减少了存储成本,同时也提供了毫秒级的数据新鲜度,即在 TP 系统里插入了一条数据,在 IP 系统里可以以毫秒级的速度查询到。

② TP 和 IP 是物理隔离、互相不影响的。由部分计算节点执行单机的引擎来处理高并发的 TP 查询,由另外一部分节点执行分布式的查询引擎来处理复杂的 AP 查询。

③ 具备弹性扩展能力。系统面度一些复杂的 SQL 时,出现算力不够的情况,即可快速增加计算节点,新的节点也可以迅速增加到分布式的计算引擎的集群里。

相比于传统的 OLAP 系统,它是一个即时生效的系统,不需要做数据的重分布和重打散,性能上有了巨大的提升。

在共享存储上实现一个完备的分布式计算引擎需要实现以下几个模块:

① 分布式优化器。优化器会根据数据分布特征生成一个分布式的执行计划数。PolarDB 是基于 GPORCA 优化器框架做的二次开发,在开发过程中,需要让优化器感知到数据是共享的。GPORCA优化器框架是基于 share-nothing ,因此应用到 PolarDB 势必要增加很多规则转换。

② 分布式执行器。为了实现分布式执行器,需要实现一整套完整的并行化的算子。比如在做数据扫描的时候,因为在 PolarDB里底层数据是共享的,各个计算节点在做顺序扫描的时候就需要做扫描算字的并行化。这些算子最后会组装成火山执行模型。

③ 事务一致性。由于分布式执行跨了多个计算节点,需要使用统一的数据位点和快照来进行事务的可见性判断,才能保证各个节点查询到的数据是全值一致性的数据。

④ SQL 全兼容。为了使新的分布式计算引擎能够被用户的业务使用,还需要对 SQL 的标准进行大量兼容性的开发工作。

PolarDB 除了能够以计算存储分离的方式运行在一个共享存储的设备上,也能支持三节点高可用的模式。此模式可以不需要依赖共享存储的设备,以本地盘的模式来运行。

首先,节点之间通过 X-Paxos 算法来对 redo 日志进行复制,以保证在region 内部能够提低延迟同时 RP=0 的可用性。

其次,借助X-Paxos算法的复制实现了自动 failover 当leader 节点宕机时,无需 DBA 人员介入,算法能够自动选出一个新的 leader 来自动恢复。

此外,还可以借助 X-Paxos 算法实现集群成员变更。与此同时,PolarDB还实现了 log 节点(即节点上只有 redo 日志没有数据页),可以通过用两个正常的节点加上一个 log 节点,实现2.5副本的方式,降低成本。

在跨region场景下,通过 log 节点实现了两地三中心的高可用部署方式。如上图, region1 是一个独立的X-Paxos 三节点高可用的模式, region2 是一个独立的 DB 部署,并在同城的另一个机房里去部署一个 log 节点。那么 region 1 和同城 log 节点之间可以采用同步复制或异步复制,而由于是在同一个城市内部,延迟也比较低,这样即实现了两地三中心的高可用的部署方式。

系统还兼容了原生的流复制和逻辑复制,用户可以在下游部署一套自己的标准的 PostgreSQL 数据库来消费上游的 redo 日志。

对于前文提到的三个 PolarDB 架构,用户可以根据业务场景对其进行自由组合来使用。比如通过云原生+HTAP组合,可以满足对弹性、 TP 和 AP 都有需求的业务。并且,三种架构的自由组合是在一套二进制里实现的,用户只需要在配置文件里面进行简单的配置,即可实现这三套架构的自由组合。

二、PolarDB企业级特性

PolarDB 的企业级特性有四个方面。

① 架构上的支持,前文已经进行了详细的讲解,此处不再赘述。

② 高性能。

  • 1) PolarDB 实现了 CSN 快照和WAL日志的流水线,解决了高并发下临界区的问题。
  • 2) 实现了预读和预扩展、RelSizeCache以及 CLOG 的优化。那么这些优化是针对DirectIO 模型下 IO 的优化。存储计算分离之后,存储的每一个 IO 都需要通过网络去访问后端的存储池,与原生场景下存在一些差异,因此需要对其进行大量的优化工作。
  • 3) 研发了logIndex 核心数据结构,它记录了每个页面历史上发生的redo日志。它不仅能解决在计算存储分离下特有的过去页面和未来页面数据正确性的问题,还解决了 PB 数据库特有的半写问题。

③ 高可用。

  • 1) 实现了 DataMax ,它提供了 log 模式来支持两地三中心的部署,还实现了 Online Promote 、延迟回放和并行回放。这三个大的功能优化了崩溃恢复的速度,缩短了 DB 进程崩溃时的不可用时间。
  • 2) 实现了常驻BufferPool ,DB 进程重启后, buffer 需要重新初始化,而目前的机器配置会导致 buffer 越来越大,进而使得buffer 的初始化需要耗费大量时间。
  • 3) 提供了Replication Slot 解决了 DB failover时slot 的丢失问题。它借助共享存储,将 slot 的信息存储到共享存储上,以此解决了复制槽丢失的问题。
  • 4) 实现了算子级别的内存控制,为每个算子的内存设置了一个上限,避免了因单个算子内存过多而导致整个 DB 进程崩溃。

④ 安全。PolarDB 提供了透明加密的功能,保证存储在盘上的数据是加密后的数据。目前透明加密支持 AES 128位 和 AES 256位 以及国密 SM4 的加密算法。

三、PolarDB开源社区

PolarDB已经开源至 github 。源码仓库地址:https://github.com/ApsaraDB/PolarDB-for-PostgreSQL

在开源的过程中,我们坚持的策略就是100% 兼容社区标准的 PostgreSQL, 保证用户能够从标准的单机PostgreSQL 无缝迁移到 PolarDB 上。其次,我们将所有组件全部开源,包括PolarDB内核、PolarDB分布式文件系统和PolarDB云管控,并承诺开源的代码与公有云上的代码完全一致。

开放云代码的同时,我们还提供了丰富的文档和视频资料,比如架构原理文档、核心功能文档、快速入门文档。

原文链接

本文为阿里云原创内容,未经允许不得转载。

首次公开!阿里云开源PolarDB总体架构和企业级特性的更多相关文章

  1. 在阿里云开源镜像站中下载centOS7

    镜像的选择 第一步.下载镜像 阿里云开源镜像站:http://mirrors.aliyun.com/ 选择centos进入 如下图: 如下图:选择centos7 再选择isos(镜像目录) 继续下一步 ...

  2. 阿里云开源镜像站支持IPv6访问

    阿里云开源镜像站在国内企业镜像站中率先支持IPv6访问! 点击立即试用https://developer.aliyun.com/mirror/ 同时基于阿里云OpenSearch的搜索能力,开源镜像站 ...

  3. 阿里云开源 image-syncer 工具,容器镜像迁移同步的终极利器

    为什么要做这个工具? 由于阿里云上的容器服务 ACK 在使用成本.运维成本.方便性.长期稳定性上大大超过公司自建自维护 Kubernets 集群,有不少公司纷纷想把之前自己维护 Kubernetes ...

  4. 深入解读阿里云数据库POLARDB核心功能会话读一致性

    POLARDB架构 我们知道,POLARDB是一个由多个节点构成的数据库集群,一个主节点,多个读节点.对外默认提供两个地址,一个是集群地址,一个是主地址,推荐使用集群地址,因为它具备读写分离功能可以把 ...

  5. 把云数据库带回家!阿里云发布POLARDB Box数据库一体机

    9月26日,2019杭州云栖大会上,阿里云宣布正式推出高性能数据库一体机——POLARDB Box,用户部署在自有数据中心即可享受云数据库的便捷体验,同时还为Oracle等传统数据库用户提供一键迁移功 ...

  6. 深入解读阿里云数据库POLARDB核心功能物理复制技术

    日志是数据库的重要组成部份,按顺序以增量的方式记录了数据库上所有的操作,日志模块的设计对于数据库的可靠性.稳定性和性能都非常重要. 可靠性方面,在有一个数据文件的基础全量备份后,对运行中的数据库来说, ...

  7. 阿里云 linux 系统的架构

    简单说,/lib是内核级的,/usr/lib是系统级的,/usr/local/lib是用户级的. /lib/ — 包含许多被 /bin/ 和 /sbin/ 中的程序使用的库文件.目录 /usr/lib ...

  8. 【IT名人堂】何云飞:阿里云数据库的架构演进之路

    [IT名人堂]何云飞:阿里云数据库的架构演进之路 原文转载自:IT168 ​ 如果说淘宝革了零售的命,那么DT革了企业IT消费的命.在阿里巴巴看来,DT时代,企业IT消费的模式变成了“云服务+数据”, ...

  9. 阿里云PolarDB及其共享存储PolarFS技术实现分析(下)

    上篇介绍了PolarDB数据库及其后端共享存储PolarFS系统的基本架构和组成模块,是最基础的部分.本篇重点分析PolarFS的数据IO流程,元数据更新流程,以及PolarDB数据库节点如何适配Po ...

  10. 阿里云POLARDB如何帮助百胜软件应对数据库的“巅峰时刻”

    POLARDB是阿里云自研的下一代关系型云数据库,100%兼容MySQL,存储容量最高可达100TB,性能最高提升至MySQL的6倍,适用于企业多样化的数据库应用场景.POLARDB采用存储和计算分离 ...

随机推荐

  1. [深度学习] 计算机视觉低代码工具Supervision库使用指北

    Supervision库是一款出色的Python计算机视觉低代码工具,其设计初衷在于为用户提供一个便捷且高效的接口,用以处理数据集以及直观地展示检测结果.Supervision库的官方开源仓库地址为: ...

  2. SqlSugar的几种连接方式

    1.最简单的使用 public class DatabaseService { private static readonly Lazy<SqlSugarClient> _db = new ...

  3. 记录--这样封装列表 hooks,一天可以开发 20 个页面

    这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 这样封装列表 hooks,一天可以开发 20 个页面 前言 在做移动端的需求时,我们经常会开发一些列表页,这些列表页大多数有着相似的功能: ...

  4. Android将数据导入到已有的excel表格_0

    用到的jxl2.6.12 jar 包下载地址: https://mvnrepository.com/artifact/net.sourceforge.jexcelapi/jxl/2.6.12

  5. ET介绍——单线程异步

    单线程异步 前面几个例子都是多线程实现的异步,但是异步显然不仅仅是多线程的.我们在之前的例子中使用了Sleep来实现时间的等待,每一个计时器都需要使用一个线程,会导致线程切换频繁,这个实现效率很低,平 ...

  6. redis的延迟双删策略

    1,redis数据为什么会存在和数据库数据不一致的问题 在多线程并发情况下,假设有两个数据库修改请求,为保证数据库与redis的数据一致性,修改请求的实现中需要修改数据库后,级联修改redis中的数据 ...

  7. #KD-Tree#洛谷 3710 方方方的数据结构

    题目 区间加,区间乘,单点查询,撤销修改 分析 由于可以离线,不妨把下标看成第一维,时间看成第二维,那么修改操作相当于在一个矩形上加或者乘, 不妨把查询的节点看作是二维平面上的点,这样实际上就可以用 ...

  8. #交互#CF1375F Integer Game

    题目 有三堆石子初始石子数分别为\(a,b,c\),可以选择先手还是后手操作, 每次操作形如先手选择一个正整数 \(k\) ,后手自由选择一堆石子加上 \(k\) , 但是不能和上一次操作选择的石堆相 ...

  9. SQL 中的 MIN 和 MAX 以及常见函数详解及示例演示

    SQL MIN() 和 MAX() 函数 SQL中的MIN()函数和MAX()函数用于查找所选列的最小值和最大值,分别.以下是它们的用法和示例: MIN() 函数 MIN()函数返回所选列的最小值. ...

  10. VS2019快捷键

    快捷键功能CTRL + SHIFT + B生成解决方案CTRL + F7 生成编译CTRL + O 打开文件CTRL + SHIFT + O打开项目CTRL + SHIFT + C显示类视图窗口F4 ...