今天同事给我一条5秒的SQL看看能不能优化。

表数据量:

select count(1) from AAAA
union all
select count(1) from XXXXX; count
---------
1000001
998000
(2 rows)

原始SQL:

SELECT A1.PK_DEPT, A1.ENABLESTATE
FROM AAAA A1
JOIN AAAA A2 ON A1.PK_DEPT = A2.PK_DEPT
WHERE ((A1.PK_GROUP = 'Group9' AND A1.PK_ORG IN ('Org9')))
AND (A1.PK_DEPT IN (SELECT T1.ORGID
FROM XXXXX T1
INNER JOIN (SELECT (CASE WHEN ORGID3 IS NULL THEN ORGID2 ELSE ORGID3 END) ORGID
FROM XXXXX
WHERE ORGID = 'Org108') T2
ON (T1.ORGID2 = T2.ORGID OR T1.ORGID3 = T2.ORGID)))
AND (A1.ENABLESTATE IN (2))
ORDER BY A1.PK_DEPT, A1.ENABLESTATE;

执行计划:

                                                                                                                  QUERY PLAN                                                           

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
--------------------------------------------------------
Sort (cost=16098.39..16098.40 rows=1 width=13) (actual time=5435.964..5454.953 rows=1000000 loops=1)
Sort Key: a1.pk_dept
Sort Method: quicksort Memory: 79264kB
-> Nested Loop Semi Join (cost=1039.46..16098.38 rows=1 width=13) (actual time=0.389..5338.781 rows=1000000 loops=1)
Join Filter: ((a1.pk_dept)::text = (t1.orgid)::text)
-> Gather (cost=1038.61..16089.43 rows=1 width=22) (actual time=0.368..55.998 rows=1000000 loops=1)
Workers Planned: 2
Workers Launched: 2
-> Hash Join (cost=38.61..15089.33 rows=1 width=22) (actual time=0.246..49.481 rows=333333 loops=3)
Hash Cond: ((a2.pk_dept)::text = (a1.pk_dept)::text)
-> Parallel Seq Scan on aaaa a2 (cost=0.00..13491.33 rows=415833 width=9) (actual time=0.009..14.206 rows=332667 loops=3)
-> Hash (cost=38.60..38.60 rows=1 width=13) (actual time=0.193..0.195 rows=1000 loops=3)
Buckets: 1024 Batches: 1 Memory Usage: 51kB
-> Bitmap Heap Scan on aaaa a1 (cost=34.58..38.60 rows=1 width=13) (actual time=0.068..0.142 rows=1000 loops=3)
Recheck Cond: (((pk_org)::text = 'Org9'::text) AND ((pk_group)::text = 'Group9'::text))
Filter: (enablestate = 2)
Heap Blocks: exact=9
-> BitmapAnd (cost=34.58..34.58 rows=1 width=0) (actual time=0.062..0.063 rows=0 loops=3)
-> Bitmap Index Scan on idx_aaaa_pkorg (cost=0.00..17.17 rows=632 width=0) (actual time=0.031..0.031 rows=1000 loops=3)
Index Cond: ((pk_org)::text = 'Org9'::text)
-> Bitmap Index Scan on idx_aaaa_pkgroup (cost=0.00..17.17 rows=632 width=0) (actual time=0.030..0.030 rows=1000 loops=3)
Index Cond: ((pk_group)::text = 'Group9'::text)
-> Nested Loop (cost=0.85..8.94 rows=1 width=9) (actual time=0.005..0.005 rows=1 loops=1000000)
Join Filter: (((t1.orgid2)::text = (CASE WHEN (xxxxx.orgid3 IS NULL) THEN xxxxx.orgid2 ELSE xxxxx.orgid3 END)::text) OR ((t1.orgid3)::text = (CASE WHEN (xxxxx.orgid3 IS
NULL) THEN xxxxx.orgid2 ELSE xxxxx.orgid3 END)::text))
-> Index Scan using idx_xxxxx_orgid on xxxxx t1 (cost=0.42..0.49 rows=1 width=27) (actual time=0.003..0.003 rows=1 loops=1000000)
Index Cond: ((orgid)::text = (a2.pk_dept)::text)
-> Index Scan using idx_3_4 on xxxxx (cost=0.42..8.44 rows=1 width=18) (actual time=0.002..0.002 rows=1 loops=1000000)
Index Cond: ((orgid)::text = 'Org108'::text)
Planning Time: 0.326 ms
Execution Time: 5478.431 ms
(30 rows)
如果经常做优化的同学对于简单的SQL,相信可以使用瞪眼大法基本定位到语句慢的位置 
AAAA、XXXXX 两张表都不算是小表,数据量在百万级别,在执行计划中,谓词都是有索引进行过滤的,
但是两张表关联以后却走了嵌套循环(Nested Loop),导致t1表和t2表关联后的内联视图作为被驱动表被干了1000000次,很明显这个执行计划是错误的。
最主要原因就是关联条件是or的逻辑条件。

可以通过等价改写来搞一下这条SQL,让
Nested Loop 改变成 hash join
等价改写SQL:
SELECT A1.PK_DEPT, A1.ENABLESTATE
FROM AAAA A1
JOIN AAAA A2 ON A1.PK_DEPT = A2.PK_DEPT
JOIN (SELECT T1.ORGID
FROM XXXXX T1
INNER JOIN (SELECT COALESCE(ORGID3, ORGID2) ORGID FROM XXXXX WHERE ORGID = 'Org108') T2
ON T1.ORGID2 = T2.ORGID
UNION
SELECT T1.ORGID
FROM XXXXX T1
INNER JOIN (SELECT COALESCE(ORGID3, ORGID2) ORGID FROM XXXXX WHERE ORGID = 'Org108') T2
ON T1.ORGID3 = T2.ORGID) X ON A1.PK_DEPT = X.ORGID
WHERE ((A1.PK_GROUP = 'Group9' AND A1.PK_ORG IN ('Org9')))
AND (A1.ENABLESTATE IN (2))
ORDER BY A1.PK_DEPT, A1.ENABLESTATE;
改写后执行计划:
                                                                            QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------------------------------------------------
Nested Loop (cost=1072.44..16123.32 rows=1 width=13) (actual time=190.512..312.537 rows=1000000 loops=1)
Join Filter: ((a1.pk_dept)::text = (t1.orgid)::text)
Rows Removed by Join Filter: 3000000
-> Unique (cost=33.83..33.84 rows=2 width=516) (actual time=0.073..0.086 rows=4 loops=1)
-> Sort (cost=33.83..33.84 rows=2 width=516) (actual time=0.072..0.079 rows=5 loops=1)
Sort Key: t1.orgid
Sort Method: quicksort Memory: 25kB
-> Append (cost=0.85..33.82 rows=2 width=516) (actual time=0.037..0.068 rows=5 loops=1)
-> Nested Loop (cost=0.85..16.90 rows=1 width=9) (actual time=0.037..0.045 rows=2 loops=1)
-> Index Scan using idx_3_4 on xxxxx (cost=0.42..8.44 rows=1 width=18) (actual time=0.022..0.023 rows=2 loops=1)
Index Cond: ((orgid)::text = 'Org108'::text)
-> Index Scan using idx_xxxxx_orgid2 on xxxxx t1 (cost=0.42..8.44 rows=1 width=18) (actual time=0.009..0.009 rows=1 loops=2)
Index Cond: ((orgid2)::text = (COALESCE(xxxxx.orgid3, xxxxx.orgid2))::text)
-> Nested Loop (cost=0.85..16.90 rows=1 width=9) (actual time=0.014..0.021 rows=3 loops=1)
-> Index Scan using idx_3_4 on xxxxx xxxxx_1 (cost=0.42..8.44 rows=1 width=18) (actual time=0.003..0.003 rows=2 loops=1)
Index Cond: ((orgid)::text = 'Org108'::text)
-> Index Scan using idx_xxxxx_orgid3 on xxxxx t1_1 (cost=0.42..8.44 rows=1 width=18) (actual time=0.008..0.008 rows=2 loops=2)
Index Cond: ((orgid3)::text = (COALESCE(xxxxx_1.orgid3, xxxxx_1.orgid2))::text)
-> Materialize (cost=1038.61..16089.43 rows=1 width=22) (actual time=0.096..43.254 rows=1000000 loops=4)
-> Gather (cost=1038.61..16089.43 rows=1 width=22) (actual time=0.384..44.877 rows=1000000 loops=1)
Workers Planned: 2
Workers Launched: 2
-> Hash Join (cost=38.61..15089.33 rows=1 width=22) (actual time=0.257..48.484 rows=333333 loops=3)
Hash Cond: ((a2.pk_dept)::text = (a1.pk_dept)::text)
-> Parallel Seq Scan on aaaa a2 (cost=0.00..13491.33 rows=415833 width=9) (actual time=0.009..14.053 rows=332667 loops=3)
-> Hash (cost=38.60..38.60 rows=1 width=13) (actual time=0.217..0.219 rows=1000 loops=3)
Buckets: 1024 Batches: 1 Memory Usage: 51kB
-> Bitmap Heap Scan on aaaa a1 (cost=34.58..38.60 rows=1 width=13) (actual time=0.085..0.160 rows=1000 loops=3)
Recheck Cond: (((pk_org)::text = 'Org9'::text) AND ((pk_group)::text = 'Group9'::text))
Filter: (enablestate = 2)
Heap Blocks: exact=9
-> BitmapAnd (cost=34.58..34.58 rows=1 width=0) (actual time=0.077..0.078 rows=0 loops=3)
-> Bitmap Index Scan on idx_aaaa_pkorg (cost=0.00..17.17 rows=632 width=0) (actual time=0.039..0.039 rows=1000 loops=3)
Index Cond: ((pk_org)::text = 'Org9'::text)
-> Bitmap Index Scan on idx_aaaa_pkgroup (cost=0.00..17.17 rows=632 width=0) (actual time=0.035..0.036 rows=1000 loops=3)
Index Cond: ((pk_group)::text = 'Group9'::text)
Planning Time: 0.236 ms
Execution Time: 337.656 ms
(38 rows)

差集比对

SELECT A1.PK_DEPT, A1.ENABLESTATE
FROM AAAA A1
JOIN AAAA A2 ON A1.PK_DEPT = A2.PK_DEPT
JOIN (SELECT T1.ORGID
FROM XXXXX T1
INNER JOIN (SELECT COALESCE(ORGID3, ORGID2) ORGID FROM XXXXX WHERE ORGID = 'Org108') T2
ON T1.ORGID2 = T2.ORGID
UNION
SELECT T1.ORGID
FROM XXXXX T1
INNER JOIN (SELECT COALESCE(ORGID3, ORGID2) ORGID FROM XXXXX WHERE ORGID = 'Org108') T2
ON T1.ORGID3 = T2.ORGID) X ON A1.PK_DEPT = X.ORGID
WHERE ((A1.PK_GROUP = 'Group9' AND A1.PK_ORG IN ('Org9')))
AND (A1.ENABLESTATE IN (2))
EXCEPT
SELECT A1.PK_DEPT, A1.ENABLESTATE
FROM AAAA A1
JOIN AAAA A2 ON A1.PK_DEPT = A2.PK_DEPT
WHERE ((A1.PK_GROUP = 'Group9' AND A1.PK_ORG IN ('Org9')))
AND (A1.PK_DEPT IN (SELECT T1.ORGID
FROM XXXXX T1
INNER JOIN (SELECT (CASE WHEN ORGID3 IS NULL THEN ORGID2 ELSE ORGID3 END) ORGID
FROM XXXXX
WHERE ORGID = 'Org108') T2
ON (T1.ORGID2 = T2.ORGID OR T1.ORGID3 = T2.ORGID))
)
AND (A1.ENABLESTATE IN (2)); pk_dept | enablestate
---------+-------------
(0 rows) Time: 5740.419 ms (00:05.740)

可以看到改写完以后,A1和A2表已经被物化,t1 内联视图作为一个整体和A1和A2进行关联,SQL执行时间也从5S降到337ms就能出结果。

通过差集比对,两条SQL是等价的,本次案例的SQL优化已完成

 
 

记录一次 postgresql 优化案例( 嵌套循环改HASH JOIN )的更多相关文章

  1. PostgreSQL 涉及复杂视图查询的优化案例

    一.前言 对于含有union , group by 等的视图,我们称之为复杂视图. 这类的视图会影响优化器对于视图的提升,也就是视图无法与父查询进行合并,从而影响访问路径.连接方法.连接顺序等.本文通 ...

  2. mysql优化案例

    MySQL优化案例 Mysql5.1大表分区效率测试 Mysql5.1大表分区效率测试MySQL | add at 2009-03-27 12:29:31 by PConline | view:60, ...

  3. Hive优化案例

    1.Hadoop计算框架的特点 数据量大不是问题,数据倾斜是个问题. jobs数比较多的作业效率相对比较低,比如即使有几百万的表,如果多次关联多次汇总,产生十几个jobs,耗时很长.原因是map re ...

  4. 记一次mysql多表查询(left jion)优化案例

    一次mysql多表查询(left jion)优化案例 在新上线的供需模块中,发现某一个查询按钮点击后,出不来结果,找到该按钮对应sql手动执行,发现需要20-30秒才能出结果,所以服务端程序判断超时, ...

  5. 数据库优化案例——————某市中心医院HIS系统

    记得在自己学习数据库知识的时候特别喜欢看案例,因为优化的手段是容易掌握的,但是整体的优化思想是很难学会的.这也是为什么自己特别喜欢看案例,今天也开始分享自己做的优化案例. 最近一直很忙,博客产出也少的 ...

  6. SQL 优化案例 1

    create or replace procedure SP_GET_NEWEST_CAPTCHA( v_ACCOUNT_ID in VARCHAR2, --接收短信的手机号 v_Tail_num i ...

  7. 数据库优化案例——————某知名零售企业ERP系统

    写在前面 记得在自己学习数据库知识的时候特别喜欢看案例,因为优化的手段是容易掌握的,但是整体的优化思想是很难学会的.这也是为什么自己特别喜欢看案例,今天也分享自己做的优化案例. 之前分享过OA系统.H ...

  8. MySQL参数优化案例

    环境介绍 优化层级与指导思想 优化过程 最小化安装情况下的性能表现 优化innodb_buffer_pool_size 优化innodb_log_files_in_group&innodb_l ...

  9. SQL 优化案例

    create or replace procedure SP_GET_NEWEST_CAPTCHA( v_ACCOUNT_ID in VARCHAR2, --接收短信的手机号 v_Tail_num i ...

  10. 老李案例分享:Weblogic性能优化案例

    老李案例分享:Weblogic性能优化案例 POPTEST的测试技术交流qq群:450192312 网站应用首页大小在130K左右,在之前的测试过程中,其百用户并发的平均响应能力在6.5秒,性能优化后 ...

随机推荐

  1. LangChain:打造自己的LLM应用

    1.LangChain是什么 LangChain是一个框架,用于开发由LLM驱动的应用程序.可以简单认为是LLM领域的Spring,以及开源版的ChatGPT插件系统.核心的2个功能为: 1)可以将 ...

  2. DBSCAN聚类

    一.概述   DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,簇集的划定完全由样本的聚集 ...

  3. K210 调节颜色阈值识别红绿黄三色

    官方在机器视觉的API中提供了寻找绿色色块的例程 https://wiki.sipeed.com/soft/maixpy/zh/api_reference/machine_vision/image/i ...

  4. CI+JUnit5并发单测机制创新实践

    一. 现状·问题 针对现如今高并发场景的业务系统,"并发问题" 终归是必不可少的一类(占比接近10%),每次出现问题和事故后,需要耗费大量人力成本排查分析并修复.那如果能在事前尽可 ...

  5. SpringBoot3数据库集成

    标签:Jdbc.Druid.Mybatis.Plus: 一.简介 项目工程中,集成数据库实现对数据的增晒改查管理,是最基础的能力,而对于这个功能的实现,其组件选型也非常丰富: 通过如下几个组件来实现数 ...

  6. c++算法之离散化

    什么是离散化? 离散化,故离散数学,其中的"离散"就是不连续的意思.离散化可以保持原数值之间相对大小关系不变的情况下将其映射成正整数. 也就是给可能用到的数值按大小关系分配一个编号 ...

  7. 【渗透测试】Vulnhub EMPIRE BREAKOUT

    渗透环境 攻击机:   IP: 192.168.149.128(Kali) 靶机:     IP:192.168.149.130 靶机下载地址:https://www.vulnhub.com/entr ...

  8. 面霸的自我修养:volatile专题

    王有志,一个分享硬核Java技术的互金摸鱼侠 加入Java人的提桶跑路群:共同富裕的Java人 今天是<面霸的自我修养>第4篇文章,我们一起来看看面试中会问到哪些关于volatile的问题 ...

  9. 论文精读:带有源标签自适应的半监督域适应(Semi-Supervised Domain Adaptation with Source Label Adaptation)

    Semi-Supervised Domain Adaptation with Source Label Adaptation 具有源标签适应的半监督域适应 原文链接 Abstract 文章指出当前的半 ...

  10. DevSecOps之应用安全测试工具及选型

    上篇文章,有同学私信想了解有哪些DevSecOps工具,这里整理出来,供大家参考(PS: 非专业安全人士,仅从DevOps建设角度,给出自己见解) 软件中的漏洞和弱点很常见:84%的软件漏洞都是利用应 ...