代码随想录算法训练营

代码随想录算法训练营Day38 动态规划|理论基础 509. 斐波那契数 70. 爬楼梯 746. 使用最小花费爬楼梯

理论基础

动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。

所以动态规划中每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优的。

例如:有N件物品和一个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

动态规划中dp[j]是由dp[j-weight[i]]推导出来的,然后取max(dp[j], dp[j - weight[i]] + value[i])。

但如果是贪心呢,每次拿物品选一个最大的或者最小的就完事了,和上一个状态没有关系。

所以贪心解决不了动态规划的问题。

其实大家也不用死扣动规和贪心的理论区别,后面做做题目自然就知道了

而且很多讲解动态规划的文章都会讲最优子结构啊和重叠子问题啊这些,这些东西都是教科书的上定义,晦涩难懂而且不实用。

大家知道动规是由前一个状态推导出来的,而贪心是局部直接选最优的,对于刷题来说就够用了。

动态规划的解题步骤

会陷入一个误区,就是以为把状态转移公式背下来,照葫芦画瓢改改,就开始写代码,甚至把题目AC之后,都不太清楚dp[i]表示的是什么。

这就是一种朦胧的状态,然后就把题给过了,遇到稍稍难一点的,可能直接就不会了,然后看题解,然后继续照葫芦画瓢陷入这种恶性循环中

状态转移公式(递推公式)是很重要,但动规不仅仅只有递推公式。

对于动态规划问题,我将拆解为如下五步曲,这五步都搞清楚了,才能说把动态规划真的掌握了!

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

    一些同学可能想为什么要先确定递推公式,然后在考虑初始化呢?

    因为一些情况是递推公式决定了dp数组要如何初始化!

    后面的讲解中我都是围绕着这五点来进行讲解。

    可能刷过动态规划题目的同学可能都知道递推公式的重要性,感觉确定了递推公式这道题目就解出来了。

    其实 确定递推公式 仅仅是解题里的一步而已!

    一些同学知道递推公式,但搞不清楚dp数组应该如何初始化,或者正确的遍历顺序,以至于记下来公式,但写的程序怎么改都通过不了。

    后序的讲解的大家就会慢慢感受到这五步的重要性了。

动态规划应该如何debug

找问题的最好方式就是把dp数组打印出来,看看究竟是不是按照自己思路推导的!

一些同学对于dp的学习是黑盒的状态,就是不清楚dp数组的含义,不懂为什么这么初始化,递推公式背下来了,遍历顺序靠习惯就是这么写的,然后一鼓作气写出代码,如果代码能通过万事大吉,通过不了的话就凭感觉改一改。

这是一个很不好的习惯。

做动规的题目,写代码之前一定要把状态转移在dp数组的上具体情况模拟一遍,心中有数,确定最后推出的是想要的结果

然后再写代码,如果代码没通过就打印dp数组,看看是不是和自己预先推导的哪里不一样。

如果打印出来和自己预先模拟推导是一样的,那么就是自己的递归公式、初始化或者遍历顺序有问题了。

如果和自己预先模拟推导的不一样,那么就是代码实现细节有问题。

这样才是一个完整的思考过程,而不是一旦代码出问题,就毫无头绪的东改改西改改,最后过不了,或者说是稀里糊涂的过了

这也是我为什么在动规五步曲里强调推导dp数组的重要性。

举个例子哈:在「代码随想录」刷题小分队微信群里,一些录友可能代码通过不了,会把代码抛到讨论群里问:我这里代码都已经和题解一模一样了,为什么通过不了呢?

发出这样的问题之前,其实可以自己先思考这三个问题:

  • 这道题目我举例推导状态转移公式了么?
  • 我打印dp数组的日志了么?
  • 打印出来了dp数组和我想的一样么?

    如果这灵魂三问自己都做到了,基本上这道题目也就解决了,或者更清晰的知道自己究竟是哪一点不明白,是状态转移不明白,还是实现代码不知道该怎么写,还是不理解遍历dp数组的顺序。

    然后在问问题,目的性就很强了,群里的小伙伴也可以快速知道提问者的疑惑了。

    注意这里不是说不让大家问问题哈, 而是说问问题之前要有自己的思考,问题要问到点子上!

    大家工作之后就会发现,特别是大厂,问问题是一个专业活,是的,问问题也要体现出专业!

509. 斐波那契数

题目链接:509. 斐波那契数

斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1 给你n ,请计算 F(n) 。

示例 1:

  • 输入:2
  • 输出:1
  • 解释:F(2) = F(1) + F(0) = 1 + 0 = 1

总体思路

斐波那契数列大家应该非常熟悉不过了,非常适合作为动规第一道题目来练练手。

因为这道题目比较简单,可能一些同学并不需要做什么分析,直接顺手一写就过了。

但「代码随想录」的风格是:简单题目是用来加深对解题方法论的理解的

通过这道题目让大家可以初步认识到,按照动规五部曲是如何解题的。

对于动规,如果没有方法论的话,可能简单题目可以顺手一写就过,难一点就不知道如何下手了。

动态五部曲

这里我们要用一个一维dp数组来保存递归的结果

  1. 确定dp数组以及下标的含义

    dp[i]的定义为:第i个数的斐波那契数值是dp[i]
  2. 确定递推公式

    为什么这是一道非常简单的入门题目呢?

    因为题目已经把递推公式直接给我们了:状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];
  3. dp数组如何初始化

    题目中把如何初始化也直接给我们了,如下:
  1. dp[0] = 0;
  2. dp[1] = 1;
  1. 确定遍历顺序

    从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的
  2. 举例推导dp数组

    按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导一下,当N为10的时候,dp数组应该是如下的数列:

    0 1 1 2 3 5 8 13 21 34 55

    如果代码写出来,发现结果不对,就把dp数组打印出来看看和我们推导的数列是不是一致的。

    以上我们用动规的方法分析完了,C++代码如下:
  1. class Solution {
  2. public:
  3. int fib(int N) {
  4. if (N <= 1) return N;
  5. vector<int> dp(N + 1);
  6. dp[0] = 0;
  7. dp[1] = 1;
  8. for (int i = 2; i <= N; i++) {
  9. dp[i] = dp[i - 1] + dp[i - 2];
  10. }
  11. return dp[N];
  12. }
  13. };

我们只需要维护两个数值就可以了,不需要记录整个序列。

  1. class Solution {
  2. public:
  3. int fib(int N) {
  4. if (N <= 1) return N;
  5. int dp[2];
  6. dp[0] = 0;
  7. dp[1] = 1;
  8. for (int i = 2; i <= N; i++) {
  9. int sum = dp[0] + dp[1];
  10. dp[0] = dp[1];
  11. dp[1] = sum;
  12. }
  13. return dp[1];
  14. }
  15. };

70. 爬楼梯`

题目链接:70. 爬楼梯

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:

  • 输入: 2
  • 输出: 2
  • 解释: 有两种方法可以爬到楼顶。
    • 1 阶 + 1 阶
    • 2 阶

总体思路

爬到第一层楼梯有一种方法,爬到二层楼梯有两种方法。

那么第一层楼梯再跨两步就到第三层 ,第二层楼梯再跨一步就到第三层。

所以到第三层楼梯的状态可以由第二层楼梯 和 到第一层楼梯状态推导出来,那么就可以想到动态规划了。

我们来分析一下,动规五部曲:

定义一个一维数组来记录不同楼层的状态

  1. 确定dp数组以及下标的含义

    dp[i]: 爬到第i层楼梯,有dp[i]种方法
  2. 确定递推公式

    如何可以推出dp[i]呢?

    从dp[i]的定义可以看出,dp[i] 可以有两个方向推出来。

    首先是dp[i - 1],上i-1层楼梯,有dp[i - 1]种方法,那么再一步跳一个台阶不就是dp[i]了么。

    还有就是dp[i - 2],上i-2层楼梯,有dp[i - 2]种方法,那么再一步跳两个台阶不就是dp[i]了么。

    那么dp[i]就是 dp[i - 1]与dp[i - 2]之和!

    所以dp[i] = dp[i - 1] + dp[i - 2] 。

    在推导dp[i]的时候,一定要时刻想着dp[i]的定义,否则容易跑偏。

    这体现出确定dp数组以及下标的含义的重要性!
  3. dp数组如何初始化

    在回顾一下dp[i]的定义:爬到第i层楼梯,有dp[i]中方法。

    那么i为0,dp[i]应该是多少呢,这个可以有很多解释,但基本都是直接奔着答案去解释的。

    例如强行安慰自己爬到第0层,也有一种方法,什么都不做也就是一种方法即:dp[0] = 1,相当于直接站在楼顶。

    但总有点牵强的成分。

    那还这么理解呢:我就认为跑到第0层,方法就是0啊,一步只能走一个台阶或者两个台阶,然而楼层是0,直接站楼顶上了,就是不用方法,dp[0]就应该是0.

    其实这么争论下去没有意义,大部分解释说dp[0]应该为1的理由其实是因为dp[0]=1的话在递推的过程中i从2开始遍历本题就能过,然后就往结果上靠去解释dp[0] = 1

    从dp数组定义的角度上来说,dp[0] = 0 也能说得通。

    需要注意的是:题目中说了n是一个正整数,题目根本就没说n有为0的情况。

    所以本题其实就不应该讨论dp[0]的初始化!

    我相信dp[1] = 1,dp[2] = 2,这个初始化大家应该都没有争议的。

    所以我的原则是:不考虑dp[0]如何初始化,只初始化dp[1] = 1,dp[2] = 2,然后从i = 3开始递推,这样才符合dp[i]的定义。
  4. 确定遍历顺序

    从递推公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,遍历顺序一定是从前向后遍历的
  5. 举例推导dp数组

    举例当n为5的时候,dp table(dp数组)应该是这样的



    此时大家应该发现了,这不就是斐波那契数列么!

    唯一的区别是,没有讨论dp[0]应该是什么,因为dp[0]在本题没有意义!
  1. // 版本一
  2. class Solution {
  3. public:
  4. int climbStairs(int n) {
  5. if (n <= 1) return n; // 因为下面直接对dp[2]操作了,防止空指针
  6. vector<int> dp(n + 1);
  7. dp[1] = 1;
  8. dp[2] = 2;
  9. for (int i = 3; i <= n; i++) { // 注意i是从3开始的
  10. dp[i] = dp[i - 1] + dp[i - 2];
  11. }
  12. return dp[n];
  13. }
  14. };

746. 使用最小花费爬楼梯

题目链接:746. 使用最小花费爬楼梯

给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。

请你计算并返回达到楼梯顶部的最低花费。

总体思路

题目中说 “你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯” 也就是相当于 跳到 下标 0 或者 下标 1 是不花费体力的, 从 下标 0 下标1 开始跳就要花费体力了。

  1. 确定dp数组以及下标的含义

    使用动态规划,就要有一个数组来记录状态,本题只需要一个一维数组dp[i]就可以了。

    dp[i]的定义:到达第i台阶所花费的最少体力为dp[i]

    对于dp数组的定义,大家一定要清晰!
  2. 确定递推公式

    可以有两个途径得到dp[i],一个是dp[i-1] 一个是dp[i-2]

    dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1]。

    dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2]。

    那么究竟是选从dp[i - 1]跳还是从dp[i - 2]跳呢?

    一定是选最小的,所以dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
  3. dp数组如何初始化

    看一下递归公式,dp[i]由dp[i - 1],dp[i - 2]推出,既然初始化所有的dp[i]是不可能的,那么只初始化dp[0]和dp[1]就够了,其他的最终都是dp[0]dp[1]推出。

    那么 dp[0] 应该是多少呢? 根据dp数组的定义,到达第0台阶所花费的最小体力为dp[0],那么有同学可能想,那dp[0] 应该是 cost[0],例如 cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] 的话,dp[0] 就是 cost[0] 应该是1。

    这里就要说明本题力扣为什么改题意,而且修改题意之后 就清晰很多的原因了。

    新题目描述中明确说了 “你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。” 也就是说 从 到达 第 0 个台阶是不花费的,但从 第0 个台阶 往上跳的话,需要花费 cost[0]。

    所以初始化 dp[0] = 0,dp[1] = 0;
  4. 确定遍历顺序

    最后一步,递归公式有了,初始化有了,如何遍历呢?

    本题的遍历顺序其实比较简单,简单到很多同学都忽略了思考这一步直接就把代码写出来了。

    因为是模拟台阶,而且dp[i]由dp[i-1]dp[i-2]推出,所以是从前到后遍历cost数组就可以了。

但是稍稍有点难度的动态规划,其遍历顺序并不容易确定下来。 例如:01背包,都知道两个for循环,一个for遍历物品嵌套一个for遍历背包容量,那么为什么不是一个for遍历背包容量嵌套一个for遍历物品呢? 以及在使用一维dp数组的时候遍历背包容量为什么要倒序呢?

这些都与遍历顺序息息相关。当然背包问题后续「代码随想录」都会重点讲解的!

  1. 举例推导dp数组

    拿示例2:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] ,来模拟一下dp数组的状态变化,如下:

  1. class Solution {
  2. public:
  3. int minCostClimbingStairs(vector<int>& cost) {
  4. vector<int> dp(cost.size() + 1);
  5. dp[0] = 0; // 默认第一步都是不花费体力的
  6. dp[1] = 0;
  7. for (int i = 2; i <= cost.size(); i++) {
  8. dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
  9. }
  10. return dp[cost.size()];
  11. }
  12. };

代码随想录算法训练营Day38 动态规划的更多相关文章

  1. 代码随想录算法训练营day01 | leetcode 704/27

    前言   考研结束半个月了,自己也简单休整了一波,估了一下分,应该能进复试,但还是感觉不够托底.不管怎样,要把代码能力和八股捡起来了,正好看到卡哥有这个算法训练营,遂果断参加,为机试和日后求职打下一个 ...

  2. 代码随想录算法训练营day02 | leetcode 977/209/59

    leetcode 977   分析1.0:   要求对平方后的int排序,而给定数组中元素可正可负,一开始有思维误区,觉得最小值一定在0左右徘徊,但数据可能并不包含0:遂继续思考,发现元素分布有三种情 ...

  3. 代码随想录算法训练营day22 | leetcode 235. 二叉搜索树的最近公共祖先 ● 701.二叉搜索树中的插入操作 ● 450.删除二叉搜索树中的节点

    LeetCode 235. 二叉搜索树的最近公共祖先 分析1.0  二叉搜索树根节点元素值大小介于子树之间,所以只要找到第一个介于他俩之间的节点就行 class Solution { public T ...

  4. 代码随想录算法训练营day17 | leetcode ● 110.平衡二叉树 ● 257. 二叉树的所有路径 ● 404.左叶子之和

    LeetCode 110.平衡二叉树 分析1.0 求左子树高度和右子树高度,若高度差>1,则返回false,所以我递归了两遍 class Solution { public boolean is ...

  5. 代码随想录算法训练营day13

    基础知识 二叉树基础知识 二叉树多考察完全二叉树.满二叉树,可以分为链式存储和数组存储,父子兄弟访问方式也有所不同,遍历也分为了前中后序遍历和层次遍历 Java定义 public class Tree ...

  6. 代码随想录算法训练营day12 | leetcode 239. 滑动窗口最大值 347.前 K 个高频元素

    基础知识 ArrayDeque deque = new ArrayDeque(); /* offerFirst(E e) 在数组前面添加元素,并返回是否添加成功 offerLast(E e) 在数组后 ...

  7. 代码随想录算法训练营day10 | leetcode 232.用栈实现队列 225. 用队列实现栈

    基础知识 使用ArrayDeque 实现栈和队列 stack push pop peek isEmpty() size() queue offer poll peek isEmpty() size() ...

  8. 代码随想录算法训练营day06 | leetcode 242、349 、202、1

    基础知识 哈希 常见的结构(不要忘记数组) 数组 set (集合) map(映射) 注意 哈希冲突 哈希函数 LeetCode 242 分析1.0 HashMap<Character, Inte ...

  9. 代码随想录算法训练营day03 | LeetCode 203/707/206

    基础知识 数据结构初始化 // 链表节点定义 public class ListNode { // 结点的值 int val; // 下一个结点 ListNode next; // 节点的构造函数(无 ...

  10. 代码随想录算法训练营day24 | leetcode 77. 组合

    基础知识 回溯法解决的问题都可以抽象为树形结构,集合的大小就构成了树的宽度,递归的深度构成的树的深度 void backtracking(参数) { if (终止条件) { 存放结果; return; ...

随机推荐

  1. Docker 基础及安装

    目录 一.简介 二.Docker的基本组成 三.Docker的安装 四.配置国内阿里云镜像加速 五.Hello World 上手实践 六.Docker底层原理 更多内容,前往 IT-BLOG 一.简介 ...

  2. Windows7系统显存只有4GB

    Windows7安装后,专用视屏内存只有4GB可用,是不是Windows7不支持4G以上显存的显卡呢?之前在网上有人说,虽然系统显示可用只有4G显存,但是游戏内实际可以超过4G.本人没有特地去试验过. ...

  3. 记录hive一次数据倾斜问题的解决以及思考总结

    解决数据倾斜是大数据开发中比较重要的能力,这个现象指的是分布式集群中,由于数据分发的不当,导致某个节点要处理的错误过多,导致整个计算机任务迟迟结束不了,甚至可能节点出现OOM使得任务失败 处理数据倾斜 ...

  4. 微信小程序登录页左上角的home图标如何隐藏?wx.hideHomeButton()不生效?

    在做微信小程序时,我们一般都会在app.js中去判断当前用户是否已经登录,如果已经登录,会直接跳转到小程序的首页.如果未登录那么直接跳转登录页. 此时我们需要把首页首页作为微信小程序的pages列表中 ...

  5. ArcMap安装OSM路网数据编辑插件ArcGIS Editor for OSM的方法

      本文介绍在ArcGIS下属的ArcMap软件中,ArcGIS Editor for OpenStreetMap这一工具集插件的下载与安装的具体方法.   ArcGIS Editor for Ope ...

  6. java -- Stringbuild, Date, Calendar

    Stringbuild类 由于String类的对象内容不可改变,每次拼接都会构建一个新的String对象,既耗时,又浪费内存空间 这时需要通过java提供的StringBuild类解决这个问题 Str ...

  7. [数据库]Ubuntu Linux/Kylin: 安装MySQL

    1 文由 由于安装环境较为特殊,实在折煞人也.而此环境的网络博客/教程偏少,觉得有必要记录一下. 2 环境 安装主机不支持联网 即 不支持APT/APT-GET等傻瓜式的在线安装方式. 硬件架构: A ...

  8. 四月十六号java基础知识

    1.如果没有一个机制来限制对类中成员的访问,则很可能会造成错误的输入如果在类的成员声明前面加上修饰符private,则无法从类的外部访问到该类内部的成员,而只能被该类自身访问和修改,而不能被任何其他类 ...

  9. SQL语句的其他关键字

    目录 数据准备 编写SQL语句小技巧 查询关键字之where筛选 查询关键字之group by 分组 查询关键字之having过滤 查询关键字之distinct去重 查询关键字之order by排序 ...

  10. BISS-C 8通道采集renishaw传感器及其CRC校验

    背景 BISS-C 是常见的位置编码器传输协议,相对于传统的协议,支持更快的传输速度,电器接口为电压差分RS422或者485,抗干扰能力较强,在精密位置传输中应用广泛. 下述信息源自雷尼绍 典型的请求 ...