题目链接:Fountain

很不错的基础算法组合题:单调栈+倍增

  1. 首先考虑到一个事实,就是下面第一个比当前半径大的位置会成为移动的第一次落脚点,抽象下就是下面出现的第一次比自身大的半径,这个问题显然可以单调栈轻松解决。

  2. 第二个点就是我们知道了单次移动的第一个位置,现在问你多次移动到的位置,并且还要保证容量是恰好大于上一次移动的喷泉圆盘,小于当前喷泉的圆盘。这点显然很容易用倍增处理出来,这若干个圆盘跳跃多次的落脚点以及此时此刻的总容量。

  3. 最后的细节自然是注意到 \(0\) 处的容量其实是无穷大,而 \(0\) 处对应的恰好又是跳出喷泉的地方,所以初始化容量为无穷大,这样一来保证不在喷泉内的地方并不影响倍增答案,当恰好大于总的容量,倍增则恰好跳到了 \(0\) 处。

参照代码
#include <bits/stdc++.h>

// #pragma GCC optimize("Ofast,unroll-loops")
// #pragma GCC optimize(2) #define isPbdsFile #ifdef isPbdsFile #include <bits/extc++.h> #else #include <ext/pb_ds/priority_queue.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/trie_policy.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/list_update_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/exception.hpp>
#include <ext/rope> #endif using namespace std;
using namespace __gnu_cxx;
using namespace __gnu_pbds;
typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef tuple<int, int, int> tii;
typedef tuple<ll, ll, ll> tll;
typedef unsigned int ui;
typedef unsigned long long ull;
typedef __int128 i128;
#define hash1 unordered_map
#define hash2 gp_hash_table
#define hash3 cc_hash_table
#define stdHeap std::priority_queue
#define pbdsHeap __gnu_pbds::priority_queue
#define sortArr(a, n) sort(a+1,a+n+1)
#define all(v) v.begin(),v.end()
#define yes cout<<"YES"
#define no cout<<"NO"
#define Spider ios_base::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
#define MyFile freopen("..\\input.txt", "r", stdin),freopen("..\\output.txt", "w", stdout);
#define forn(i, a, b) for(int i = a; i <= b; i++)
#define forv(i, a, b) for(int i=a;i>=b;i--)
#define ls(x) (x<<1)
#define rs(x) (x<<1|1)
#define endl '\n'
//用于Miller-Rabin
[[maybe_unused]] static int Prime_Number[13] = {0, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}; template <typename T>
int disc(T* a, int n)
{
return unique(a + 1, a + n + 1) - (a + 1);
} template <typename T>
T lowBit(T x)
{
return x & -x;
} template <typename T>
T Rand(T l, T r)
{
static mt19937 Rand(time(nullptr));
uniform_int_distribution<T> dis(l, r);
return dis(Rand);
} template <typename T1, typename T2>
T1 modt(T1 a, T2 b)
{
return (a % b + b) % b;
} template <typename T1, typename T2, typename T3>
T1 qPow(T1 a, T2 b, T3 c)
{
a %= c;
T1 ans = 1;
for (; b; b >>= 1, (a *= a) %= c)if (b & 1)(ans *= a) %= c;
return modt(ans, c);
} template <typename T>
void read(T& x)
{
x = 0;
T sign = 1;
char ch = getchar();
while (!isdigit(ch))
{
if (ch == '-')sign = -1;
ch = getchar();
}
while (isdigit(ch))
{
x = (x << 3) + (x << 1) + (ch ^ 48);
ch = getchar();
}
x *= sign;
} template <typename T, typename... U>
void read(T& x, U&... y)
{
read(x);
read(y...);
} template <typename T>
void write(T x)
{
if (typeid(x) == typeid(char))return;
if (x < 0)x = -x, putchar('-');
if (x > 9)write(x / 10);
putchar(x % 10 ^ 48);
} template <typename C, typename T, typename... U>
void write(C c, T x, U... y)
{
write(x), putchar(c);
write(c, y...);
} template <typename T11, typename T22, typename T33>
struct T3
{
T11 one;
T22 tow;
T33 three; bool operator<(const T3 other) const
{
if (one == other.one)
{
if (tow == other.tow)return three < other.three;
return tow < other.tow;
}
return one < other.one;
} T3() { one = tow = three = 0; } T3(T11 one, T22 tow, T33 three) : one(one), tow(tow), three(three)
{
}
}; template <typename T1, typename T2>
void uMax(T1& x, T2 y)
{
if (x < y)x = y;
} template <typename T1, typename T2>
void uMin(T1& x, T2 y)
{
if (x > y)x = y;
} constexpr int N = 1e5 + 10;
constexpr int T = 25;
ll sum[N][T], go[N][T];
stack<int> st;
pii node[N];
int n, q; inline void solve()
{
cin >> n >> q;
const int stepMax = log2(n);//倍增上限步长
forn(i, 1, n)forn(j, 0, stepMax)sum[i][j] = 1e9;//初始化为所有地方无穷大
forn(i, 1, n)cin >> node[i].first >> node[i].second, sum[i][0] = node[i].second;//初始化要跳出第一步需要的容量
forn(i, 1, n)
{
while (!st.empty() and node[st.top()].first < node[i].first)
{
go[st.top()][0] = i;//更新第一次条跳的位置
st.pop();
}
st.push(i);
}
//倍增预处理
forn(j, 1, stepMax)
{
forn(i, 1, n-(1<<j)+1)
{
go[i][j] = go[go[i][j - 1]][j - 1];
sum[i][j] = sum[i][j - 1] + sum[go[i][j - 1]][j - 1];
}
}
while (q--)
{
ll pos, val;
cin >> pos >> val;
forv(i, stepMax, 0)if (val > sum[pos][i])val -= sum[pos][i], pos = go[pos][i];//能大于这个容量就跳
cout << pos << endl;
}
} signed int main()
{
// MyFile
Spider
//------------------------------------------------------
// clock_t start = clock();
int test = 1;
// read(test);
// cin >> test;
forn(i, 1, test)solve();
// while (cin >> n, n)solve();
// while (cin >> test)solve();
// clock_t end = clock();
// cerr << "time = " << double(end - start) / CLOCKS_PER_SEC << "s" << endl;
}
\[时间复杂度为 \ O((N+Q)\log{N})
\]

P7167 [eJOI2020 Day1] Fountain 题解的更多相关文章

  1. A · F · O —— JLOI2018翻车记(附Day1简要题解)

    JLOI2018翻车记 并不知道该怎么写... 算了还是按照标准剧情来吧 这应该是一篇写得非常差的流水账... 2018.04.04 Day -1 省选前在机房的最后一天. 压力并不是很大,毕竟联赛 ...

  2. 「CSP-S」2019年第一届Day1游记+题解

    「CSP-S」2019年第一届Day1游记+题解 Day 1 7:30 A.M. 8:10 A.M. 8:30 A.M. T1 格雷码 题目 考场经历+思考(正解) 8:50 A.M. T2 括号树 ...

  3. 洛谷P7167 [eJOI 2020 Day1] Fountain (单调栈+ST)

    开两个数组:to[i][j]表示从i这个位置向下的第2j个圆盘是哪个,f[i][j]表示流满从i这个位置向下的 2j 个圆盘需要多少体积的水. 详情见代码: 1 #include<bits/st ...

  4. JLOI2015 DAY1 简要题解

    「JLOI2015」有意义的字符串 题意 给你 \(b, d, n\) 求 \[ [(\frac{b + \sqrt d}2)^n] \mod 7528443412579576937 \] \(0 & ...

  5. SCOI2016 Day1 简要题解

    目录 「SCOI2016」背单词 题意 题解 代码 「SCOI2016」幸运数字 题意 题解 总结 代码 「SCOI2016」萌萌哒 题意 题解 总结 代码 「SCOI2016」背单词 题意 这出题人 ...

  6. SCOI 2015 Day1 简要题解

    「SCOI2015」小凸玩矩阵 题意 一个 \(N \times M\)( $ N \leq M $ )的矩阵 $ A $,要求小凸从其中选出 $ N $ 个数,其中任意两个数字不能在同一行或同一列, ...

  7. [NOIP 2018 Day1] 简要题解

    [题目链接] 铺设道路 : https://www.luogu.org/problemnew/show/P5019 货币系统 : https://www.luogu.org/problemnew/sh ...

  8. AHOI2013 Round2 Day1 简要题解

    第一题,好吧这是个dp.(搜素也能在BZOJ上卡过). 第二题,BFS搜索碰到的立方体面数,智硬没有想到... 第三题,其实一看就有思路,但关键是求x坐标不交的矩形对数+y坐标不交的矩形对数 - x, ...

  9. 【NOIP2012】DAY1+DAY2题解

    不贴代码的原因是我的代码在初中机房.忘记带过来了. DAY 1 T1随便搞,但是字符串相关的题我经常犯蠢 T2 一个结论题,OAO但是需要高精度写. 具体就是按左手的数除右手的数(还是怎么的来着)排个 ...

  10. 【NOIP2018 Day1】题解

    T3 rp++; 今天题比较简单 而且考了很多嫌疑原题? 大家基本250+ 本蒟蒻...T3十分看脸 再次祝rp++; T1 积木大赛本赛嘛 如果d[i] < d[i - 1] ans += d ...

随机推荐

  1. 你以为这是MacOS ,其实这是我的 Linux 系统 Manjaro!

    对于如何将你的 Manjaro 系统美化成 MacOS 你需要做以下几件事情: 1.安装 WhiteSur-Gtk-theme 主题. 2.安装 Plank 软件. 3.安装 vala-panel-a ...

  2. 安全情报 | Pypi再现窃密攻击投毒

    概述 悬镜安全自研的开源组件投毒检测平台通过对主流开源软件仓库(包括Pypi.NPM.Ruby等)发布的组件包进行持续性监控和自动化代码安全分析,同时结合专家安全经验复审,能够及时发现组件包投毒事件并 ...

  3. SAE 2.0,让容器化应用开发更简单

    云原生容器化应用托管模式的演变 云原生这个概念从提出,到壮大,再到今天的极大普及,始终处于一个不断演进和革新的过程中.云原生体系下应用的托管形态是随着企业应用架构在不断演进的.最早的应用大多是集中式. ...

  4. 新零售标杆 SKG 全面拥抱 Serverless,敏捷交付

    副标题:SKG 渠道中台借助 SAE +大禹打造云原生 DevOPS,提效 60% 作者:陈列昂(SKG).昕辰.龙琛.黛忻 项目背景 未来穿戴健康科技股份有限公司(SKG)是一家专注为个人与家庭提供 ...

  5. vue 状态管理 四、Action用法

    系列导航 vue 状态管理 一.状态管理概念和基本结构 vue 状态管理 二.状态管理的基本使用 vue 状态管理 三.Mutations和Getters用法 vue 状态管理 四.Action用法 ...

  6. 大数据(3)---HDFS客户端命令及java连接

    一.参数设置 之前有说到HDFS的备份数量和切块大小都是可以配置的,默认是备份3,切块大小默认128M 文件的切块大小和存储的副本数量,都是由客户端决定! 所谓的由客户端决定,是通过客户端机器上面的配 ...

  7. C#对字符串进行加密解密

    首先上效果图 加解密接口 internal string ToEncrypt(string encryptKey, string str) { try { byte[] P_byte_key = // ...

  8. 万字血书Vue—Vue的核心概念

    MVVM M:模型(Model):data V:视图(View):模板 VM:视图模型(ViewModel):Vue实例对象 Vue收到了MVVM模型的启发,MVVM是vue实现数据驱动视图和双向数据 ...

  9. Clock Gating Design

    GPU max power distribution internal power and switch power - 动态功耗(时钟翻转) Leakage power - 漏电功耗(静态功耗,mo ...

  10. Oracle ORA-01861: 文字与格式字符串不匹配(日期格式导致的问题)

    1.问题 如图所示,Oracle ORA-01861: 文字与格式字符串不匹配.这里的日期格式出现问题,导致了ORA-01861错误. 2.解决方式 原因: 如果直接按照字符串方式,或者直接使用to_ ...