P7167 [eJOI2020 Day1] Fountain 题解
题目链接:Fountain
很不错的基础算法组合题:单调栈+倍增
首先考虑到一个事实,就是下面第一个比当前半径大的位置会成为移动的第一次落脚点,抽象下就是下面出现的第一次比自身大的半径,这个问题显然可以单调栈轻松解决。
第二个点就是我们知道了单次移动的第一个位置,现在问你多次移动到的位置,并且还要保证容量是恰好大于上一次移动的喷泉圆盘,小于当前喷泉的圆盘。这点显然很容易用倍增处理出来,这若干个圆盘跳跃多次的落脚点以及此时此刻的总容量。
最后的细节自然是注意到 \(0\) 处的容量其实是无穷大,而 \(0\) 处对应的恰好又是跳出喷泉的地方,所以初始化容量为无穷大,这样一来保证不在喷泉内的地方并不影响倍增答案,当恰好大于总的容量,倍增则恰好跳到了 \(0\) 处。
参照代码
#include <bits/stdc++.h>
// #pragma GCC optimize("Ofast,unroll-loops")
// #pragma GCC optimize(2)
#define isPbdsFile
#ifdef isPbdsFile
#include <bits/extc++.h>
#else
#include <ext/pb_ds/priority_queue.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/trie_policy.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/list_update_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/exception.hpp>
#include <ext/rope>
#endif
using namespace std;
using namespace __gnu_cxx;
using namespace __gnu_pbds;
typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef tuple<int, int, int> tii;
typedef tuple<ll, ll, ll> tll;
typedef unsigned int ui;
typedef unsigned long long ull;
typedef __int128 i128;
#define hash1 unordered_map
#define hash2 gp_hash_table
#define hash3 cc_hash_table
#define stdHeap std::priority_queue
#define pbdsHeap __gnu_pbds::priority_queue
#define sortArr(a, n) sort(a+1,a+n+1)
#define all(v) v.begin(),v.end()
#define yes cout<<"YES"
#define no cout<<"NO"
#define Spider ios_base::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
#define MyFile freopen("..\\input.txt", "r", stdin),freopen("..\\output.txt", "w", stdout);
#define forn(i, a, b) for(int i = a; i <= b; i++)
#define forv(i, a, b) for(int i=a;i>=b;i--)
#define ls(x) (x<<1)
#define rs(x) (x<<1|1)
#define endl '\n'
//用于Miller-Rabin
[[maybe_unused]] static int Prime_Number[13] = {0, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37};
template <typename T>
int disc(T* a, int n)
{
return unique(a + 1, a + n + 1) - (a + 1);
}
template <typename T>
T lowBit(T x)
{
return x & -x;
}
template <typename T>
T Rand(T l, T r)
{
static mt19937 Rand(time(nullptr));
uniform_int_distribution<T> dis(l, r);
return dis(Rand);
}
template <typename T1, typename T2>
T1 modt(T1 a, T2 b)
{
return (a % b + b) % b;
}
template <typename T1, typename T2, typename T3>
T1 qPow(T1 a, T2 b, T3 c)
{
a %= c;
T1 ans = 1;
for (; b; b >>= 1, (a *= a) %= c)if (b & 1)(ans *= a) %= c;
return modt(ans, c);
}
template <typename T>
void read(T& x)
{
x = 0;
T sign = 1;
char ch = getchar();
while (!isdigit(ch))
{
if (ch == '-')sign = -1;
ch = getchar();
}
while (isdigit(ch))
{
x = (x << 3) + (x << 1) + (ch ^ 48);
ch = getchar();
}
x *= sign;
}
template <typename T, typename... U>
void read(T& x, U&... y)
{
read(x);
read(y...);
}
template <typename T>
void write(T x)
{
if (typeid(x) == typeid(char))return;
if (x < 0)x = -x, putchar('-');
if (x > 9)write(x / 10);
putchar(x % 10 ^ 48);
}
template <typename C, typename T, typename... U>
void write(C c, T x, U... y)
{
write(x), putchar(c);
write(c, y...);
}
template <typename T11, typename T22, typename T33>
struct T3
{
T11 one;
T22 tow;
T33 three;
bool operator<(const T3 other) const
{
if (one == other.one)
{
if (tow == other.tow)return three < other.three;
return tow < other.tow;
}
return one < other.one;
}
T3() { one = tow = three = 0; }
T3(T11 one, T22 tow, T33 three) : one(one), tow(tow), three(three)
{
}
};
template <typename T1, typename T2>
void uMax(T1& x, T2 y)
{
if (x < y)x = y;
}
template <typename T1, typename T2>
void uMin(T1& x, T2 y)
{
if (x > y)x = y;
}
constexpr int N = 1e5 + 10;
constexpr int T = 25;
ll sum[N][T], go[N][T];
stack<int> st;
pii node[N];
int n, q;
inline void solve()
{
cin >> n >> q;
const int stepMax = log2(n);//倍增上限步长
forn(i, 1, n)forn(j, 0, stepMax)sum[i][j] = 1e9;//初始化为所有地方无穷大
forn(i, 1, n)cin >> node[i].first >> node[i].second, sum[i][0] = node[i].second;//初始化要跳出第一步需要的容量
forn(i, 1, n)
{
while (!st.empty() and node[st.top()].first < node[i].first)
{
go[st.top()][0] = i;//更新第一次条跳的位置
st.pop();
}
st.push(i);
}
//倍增预处理
forn(j, 1, stepMax)
{
forn(i, 1, n-(1<<j)+1)
{
go[i][j] = go[go[i][j - 1]][j - 1];
sum[i][j] = sum[i][j - 1] + sum[go[i][j - 1]][j - 1];
}
}
while (q--)
{
ll pos, val;
cin >> pos >> val;
forv(i, stepMax, 0)if (val > sum[pos][i])val -= sum[pos][i], pos = go[pos][i];//能大于这个容量就跳
cout << pos << endl;
}
}
signed int main()
{
// MyFile
Spider
//------------------------------------------------------
// clock_t start = clock();
int test = 1;
// read(test);
// cin >> test;
forn(i, 1, test)solve();
// while (cin >> n, n)solve();
// while (cin >> test)solve();
// clock_t end = clock();
// cerr << "time = " << double(end - start) / CLOCKS_PER_SEC << "s" << endl;
}
\]
P7167 [eJOI2020 Day1] Fountain 题解的更多相关文章
- A · F · O —— JLOI2018翻车记(附Day1简要题解)
JLOI2018翻车记 并不知道该怎么写... 算了还是按照标准剧情来吧 这应该是一篇写得非常差的流水账... 2018.04.04 Day -1 省选前在机房的最后一天. 压力并不是很大,毕竟联赛 ...
- 「CSP-S」2019年第一届Day1游记+题解
「CSP-S」2019年第一届Day1游记+题解 Day 1 7:30 A.M. 8:10 A.M. 8:30 A.M. T1 格雷码 题目 考场经历+思考(正解) 8:50 A.M. T2 括号树 ...
- 洛谷P7167 [eJOI 2020 Day1] Fountain (单调栈+ST)
开两个数组:to[i][j]表示从i这个位置向下的第2j个圆盘是哪个,f[i][j]表示流满从i这个位置向下的 2j 个圆盘需要多少体积的水. 详情见代码: 1 #include<bits/st ...
- JLOI2015 DAY1 简要题解
「JLOI2015」有意义的字符串 题意 给你 \(b, d, n\) 求 \[ [(\frac{b + \sqrt d}2)^n] \mod 7528443412579576937 \] \(0 & ...
- SCOI2016 Day1 简要题解
目录 「SCOI2016」背单词 题意 题解 代码 「SCOI2016」幸运数字 题意 题解 总结 代码 「SCOI2016」萌萌哒 题意 题解 总结 代码 「SCOI2016」背单词 题意 这出题人 ...
- SCOI 2015 Day1 简要题解
「SCOI2015」小凸玩矩阵 题意 一个 \(N \times M\)( $ N \leq M $ )的矩阵 $ A $,要求小凸从其中选出 $ N $ 个数,其中任意两个数字不能在同一行或同一列, ...
- [NOIP 2018 Day1] 简要题解
[题目链接] 铺设道路 : https://www.luogu.org/problemnew/show/P5019 货币系统 : https://www.luogu.org/problemnew/sh ...
- AHOI2013 Round2 Day1 简要题解
第一题,好吧这是个dp.(搜素也能在BZOJ上卡过). 第二题,BFS搜索碰到的立方体面数,智硬没有想到... 第三题,其实一看就有思路,但关键是求x坐标不交的矩形对数+y坐标不交的矩形对数 - x, ...
- 【NOIP2012】DAY1+DAY2题解
不贴代码的原因是我的代码在初中机房.忘记带过来了. DAY 1 T1随便搞,但是字符串相关的题我经常犯蠢 T2 一个结论题,OAO但是需要高精度写. 具体就是按左手的数除右手的数(还是怎么的来着)排个 ...
- 【NOIP2018 Day1】题解
T3 rp++; 今天题比较简单 而且考了很多嫌疑原题? 大家基本250+ 本蒟蒻...T3十分看脸 再次祝rp++; T1 积木大赛本赛嘛 如果d[i] < d[i - 1] ans += d ...
随机推荐
- Codeforces Round #697 (Div. 3) A - G个人题解记录
Codeforces Round #697 (Div. 3) 1475A. Odd Divisor 问一个数是否有奇除数. 对 2 不断除,如果最后 n == 1即不可能存在,否在存在. int ma ...
- Sentinel 是如何做限流的
限流是保障服务高可用的方式之一,尤其是在微服务架构中,对接口或资源进行限流可以有效地保障服务的可用性和稳定性. 之前的项目中使用的限流措施主要是Guava的RateLimiter.RateLimite ...
- springboot 实现接收前端发来的图片和视频以及在页面上展示图片和视频
springboot 实现接收前端发来的图片和视频以及在页面上展示图片和视频 一.效果: 1.上传图片 2.显示上传的图片 3.上传的视频 4.显示上传的视频 二.代码 没依赖特殊的包,引入sprin ...
- 《3D编程模式》写书记录
本书介绍 本书罗列了我从自己的实战项目中提炼出来的关于3D编程(主要包括"3D引擎/游戏引擎"."编辑器"开发)的各种编程模式 所有的写书记录 <3D编程 ...
- token原理分析
- Angular系列教程之父子组件通信详解
.markdown-body { line-height: 1.75; font-weight: 400; font-size: 16px; overflow-x: hidden; color: rg ...
- 基于AHB_BUS Clac slave详解
基于AHB-APB BUS slave详解 1.目录 高内聚:让模块的功能更集中,更单一. AMBA总线例子,需要有一个模块和AMBA进行交互,就可以单独将与AHB总线进行交互的部分作为一个模块.经常 ...
- C++初始化列表时,形参和实参名可以一样,编译器可以识别
在这里初始化列表直接用age(age)即可,用this->age(age)反而会出错,C++不允许在成员初始化列表中使用this关键字来初始化类成员 class Person { public: ...
- 百度网盘(百度云)SVIP超级会员共享账号每日更新(2023.12.27)
一.百度网盘SVIP超级会员共享账号 可能很多人不懂这个共享账号是什么意思,小编在这里给大家做一下解答. 我们多知道百度网盘很大的用处就是类似U盘,不同的人把文件上传到百度网盘,别人可以直接下载,避免 ...
- Mygin 实现简单Http
本篇是完全参考gin的功能,自己手动实现一个类似的功能,帮助自己理解和学习gin框架 目的 简单介绍net/http库以及http.Handler接口 实现简单的功能 标准库启动Web服务 impor ...