题目链接:Fountain

很不错的基础算法组合题:单调栈+倍增

  1. 首先考虑到一个事实,就是下面第一个比当前半径大的位置会成为移动的第一次落脚点,抽象下就是下面出现的第一次比自身大的半径,这个问题显然可以单调栈轻松解决。

  2. 第二个点就是我们知道了单次移动的第一个位置,现在问你多次移动到的位置,并且还要保证容量是恰好大于上一次移动的喷泉圆盘,小于当前喷泉的圆盘。这点显然很容易用倍增处理出来,这若干个圆盘跳跃多次的落脚点以及此时此刻的总容量。

  3. 最后的细节自然是注意到 \(0\) 处的容量其实是无穷大,而 \(0\) 处对应的恰好又是跳出喷泉的地方,所以初始化容量为无穷大,这样一来保证不在喷泉内的地方并不影响倍增答案,当恰好大于总的容量,倍增则恰好跳到了 \(0\) 处。

参照代码
#include <bits/stdc++.h>

// #pragma GCC optimize("Ofast,unroll-loops")
// #pragma GCC optimize(2) #define isPbdsFile #ifdef isPbdsFile #include <bits/extc++.h> #else #include <ext/pb_ds/priority_queue.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/trie_policy.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
#include <ext/pb_ds/hash_policy.hpp>
#include <ext/pb_ds/list_update_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/exception.hpp>
#include <ext/rope> #endif using namespace std;
using namespace __gnu_cxx;
using namespace __gnu_pbds;
typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef tuple<int, int, int> tii;
typedef tuple<ll, ll, ll> tll;
typedef unsigned int ui;
typedef unsigned long long ull;
typedef __int128 i128;
#define hash1 unordered_map
#define hash2 gp_hash_table
#define hash3 cc_hash_table
#define stdHeap std::priority_queue
#define pbdsHeap __gnu_pbds::priority_queue
#define sortArr(a, n) sort(a+1,a+n+1)
#define all(v) v.begin(),v.end()
#define yes cout<<"YES"
#define no cout<<"NO"
#define Spider ios_base::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
#define MyFile freopen("..\\input.txt", "r", stdin),freopen("..\\output.txt", "w", stdout);
#define forn(i, a, b) for(int i = a; i <= b; i++)
#define forv(i, a, b) for(int i=a;i>=b;i--)
#define ls(x) (x<<1)
#define rs(x) (x<<1|1)
#define endl '\n'
//用于Miller-Rabin
[[maybe_unused]] static int Prime_Number[13] = {0, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}; template <typename T>
int disc(T* a, int n)
{
return unique(a + 1, a + n + 1) - (a + 1);
} template <typename T>
T lowBit(T x)
{
return x & -x;
} template <typename T>
T Rand(T l, T r)
{
static mt19937 Rand(time(nullptr));
uniform_int_distribution<T> dis(l, r);
return dis(Rand);
} template <typename T1, typename T2>
T1 modt(T1 a, T2 b)
{
return (a % b + b) % b;
} template <typename T1, typename T2, typename T3>
T1 qPow(T1 a, T2 b, T3 c)
{
a %= c;
T1 ans = 1;
for (; b; b >>= 1, (a *= a) %= c)if (b & 1)(ans *= a) %= c;
return modt(ans, c);
} template <typename T>
void read(T& x)
{
x = 0;
T sign = 1;
char ch = getchar();
while (!isdigit(ch))
{
if (ch == '-')sign = -1;
ch = getchar();
}
while (isdigit(ch))
{
x = (x << 3) + (x << 1) + (ch ^ 48);
ch = getchar();
}
x *= sign;
} template <typename T, typename... U>
void read(T& x, U&... y)
{
read(x);
read(y...);
} template <typename T>
void write(T x)
{
if (typeid(x) == typeid(char))return;
if (x < 0)x = -x, putchar('-');
if (x > 9)write(x / 10);
putchar(x % 10 ^ 48);
} template <typename C, typename T, typename... U>
void write(C c, T x, U... y)
{
write(x), putchar(c);
write(c, y...);
} template <typename T11, typename T22, typename T33>
struct T3
{
T11 one;
T22 tow;
T33 three; bool operator<(const T3 other) const
{
if (one == other.one)
{
if (tow == other.tow)return three < other.three;
return tow < other.tow;
}
return one < other.one;
} T3() { one = tow = three = 0; } T3(T11 one, T22 tow, T33 three) : one(one), tow(tow), three(three)
{
}
}; template <typename T1, typename T2>
void uMax(T1& x, T2 y)
{
if (x < y)x = y;
} template <typename T1, typename T2>
void uMin(T1& x, T2 y)
{
if (x > y)x = y;
} constexpr int N = 1e5 + 10;
constexpr int T = 25;
ll sum[N][T], go[N][T];
stack<int> st;
pii node[N];
int n, q; inline void solve()
{
cin >> n >> q;
const int stepMax = log2(n);//倍增上限步长
forn(i, 1, n)forn(j, 0, stepMax)sum[i][j] = 1e9;//初始化为所有地方无穷大
forn(i, 1, n)cin >> node[i].first >> node[i].second, sum[i][0] = node[i].second;//初始化要跳出第一步需要的容量
forn(i, 1, n)
{
while (!st.empty() and node[st.top()].first < node[i].first)
{
go[st.top()][0] = i;//更新第一次条跳的位置
st.pop();
}
st.push(i);
}
//倍增预处理
forn(j, 1, stepMax)
{
forn(i, 1, n-(1<<j)+1)
{
go[i][j] = go[go[i][j - 1]][j - 1];
sum[i][j] = sum[i][j - 1] + sum[go[i][j - 1]][j - 1];
}
}
while (q--)
{
ll pos, val;
cin >> pos >> val;
forv(i, stepMax, 0)if (val > sum[pos][i])val -= sum[pos][i], pos = go[pos][i];//能大于这个容量就跳
cout << pos << endl;
}
} signed int main()
{
// MyFile
Spider
//------------------------------------------------------
// clock_t start = clock();
int test = 1;
// read(test);
// cin >> test;
forn(i, 1, test)solve();
// while (cin >> n, n)solve();
// while (cin >> test)solve();
// clock_t end = clock();
// cerr << "time = " << double(end - start) / CLOCKS_PER_SEC << "s" << endl;
}
\[时间复杂度为 \ O((N+Q)\log{N})
\]

P7167 [eJOI2020 Day1] Fountain 题解的更多相关文章

  1. A · F · O —— JLOI2018翻车记(附Day1简要题解)

    JLOI2018翻车记 并不知道该怎么写... 算了还是按照标准剧情来吧 这应该是一篇写得非常差的流水账... 2018.04.04 Day -1 省选前在机房的最后一天. 压力并不是很大,毕竟联赛 ...

  2. 「CSP-S」2019年第一届Day1游记+题解

    「CSP-S」2019年第一届Day1游记+题解 Day 1 7:30 A.M. 8:10 A.M. 8:30 A.M. T1 格雷码 题目 考场经历+思考(正解) 8:50 A.M. T2 括号树 ...

  3. 洛谷P7167 [eJOI 2020 Day1] Fountain (单调栈+ST)

    开两个数组:to[i][j]表示从i这个位置向下的第2j个圆盘是哪个,f[i][j]表示流满从i这个位置向下的 2j 个圆盘需要多少体积的水. 详情见代码: 1 #include<bits/st ...

  4. JLOI2015 DAY1 简要题解

    「JLOI2015」有意义的字符串 题意 给你 \(b, d, n\) 求 \[ [(\frac{b + \sqrt d}2)^n] \mod 7528443412579576937 \] \(0 & ...

  5. SCOI2016 Day1 简要题解

    目录 「SCOI2016」背单词 题意 题解 代码 「SCOI2016」幸运数字 题意 题解 总结 代码 「SCOI2016」萌萌哒 题意 题解 总结 代码 「SCOI2016」背单词 题意 这出题人 ...

  6. SCOI 2015 Day1 简要题解

    「SCOI2015」小凸玩矩阵 题意 一个 \(N \times M\)( $ N \leq M $ )的矩阵 $ A $,要求小凸从其中选出 $ N $ 个数,其中任意两个数字不能在同一行或同一列, ...

  7. [NOIP 2018 Day1] 简要题解

    [题目链接] 铺设道路 : https://www.luogu.org/problemnew/show/P5019 货币系统 : https://www.luogu.org/problemnew/sh ...

  8. AHOI2013 Round2 Day1 简要题解

    第一题,好吧这是个dp.(搜素也能在BZOJ上卡过). 第二题,BFS搜索碰到的立方体面数,智硬没有想到... 第三题,其实一看就有思路,但关键是求x坐标不交的矩形对数+y坐标不交的矩形对数 - x, ...

  9. 【NOIP2012】DAY1+DAY2题解

    不贴代码的原因是我的代码在初中机房.忘记带过来了. DAY 1 T1随便搞,但是字符串相关的题我经常犯蠢 T2 一个结论题,OAO但是需要高精度写. 具体就是按左手的数除右手的数(还是怎么的来着)排个 ...

  10. 【NOIP2018 Day1】题解

    T3 rp++; 今天题比较简单 而且考了很多嫌疑原题? 大家基本250+ 本蒟蒻...T3十分看脸 再次祝rp++; T1 积木大赛本赛嘛 如果d[i] < d[i - 1] ans += d ...

随机推荐

  1. Codeforces Round #697 (Div. 3) A - G个人题解记录

    Codeforces Round #697 (Div. 3) 1475A. Odd Divisor 问一个数是否有奇除数. 对 2 不断除,如果最后 n == 1即不可能存在,否在存在. int ma ...

  2. Sentinel 是如何做限流的

    限流是保障服务高可用的方式之一,尤其是在微服务架构中,对接口或资源进行限流可以有效地保障服务的可用性和稳定性. 之前的项目中使用的限流措施主要是Guava的RateLimiter.RateLimite ...

  3. springboot 实现接收前端发来的图片和视频以及在页面上展示图片和视频

    springboot 实现接收前端发来的图片和视频以及在页面上展示图片和视频 一.效果: 1.上传图片 2.显示上传的图片 3.上传的视频 4.显示上传的视频 二.代码 没依赖特殊的包,引入sprin ...

  4. 《3D编程模式》写书记录

    本书介绍 本书罗列了我从自己的实战项目中提炼出来的关于3D编程(主要包括"3D引擎/游戏引擎"."编辑器"开发)的各种编程模式 所有的写书记录 <3D编程 ...

  5. token原理分析

  6. Angular系列教程之父子组件通信详解

    .markdown-body { line-height: 1.75; font-weight: 400; font-size: 16px; overflow-x: hidden; color: rg ...

  7. 基于AHB_BUS Clac slave详解

    基于AHB-APB BUS slave详解 1.目录 高内聚:让模块的功能更集中,更单一. AMBA总线例子,需要有一个模块和AMBA进行交互,就可以单独将与AHB总线进行交互的部分作为一个模块.经常 ...

  8. C++初始化列表时,形参和实参名可以一样,编译器可以识别

    在这里初始化列表直接用age(age)即可,用this->age(age)反而会出错,C++不允许在成员初始化列表中使用this关键字来初始化类成员 class Person { public: ...

  9. 百度网盘(百度云)SVIP超级会员共享账号每日更新(2023.12.27)

    一.百度网盘SVIP超级会员共享账号 可能很多人不懂这个共享账号是什么意思,小编在这里给大家做一下解答. 我们多知道百度网盘很大的用处就是类似U盘,不同的人把文件上传到百度网盘,别人可以直接下载,避免 ...

  10. Mygin 实现简单Http

    本篇是完全参考gin的功能,自己手动实现一个类似的功能,帮助自己理解和学习gin框架 目的 简单介绍net/http库以及http.Handler接口 实现简单的功能 标准库启动Web服务 impor ...