@

概述

定义

flink-cdc-connectors 官网 https://github.com/ververica/flink-cdc-connectors 源码release最新版本2.4.0

flink-cdc-connectors 文档地址 https://ververica.github.io/flink-cdc-connectors/master/

flink-cdc-connectors 源码地址 https://github.com/ververica/flink-cdc-connectors

CDC Connectors for Apache Flink 是Apache Flink的一组源连接器,使用更改数据捕获(CDC)从不同的数据库摄取更改,其集成了Debezium作为捕获数据变化的引擎,因此它可以充分利用Debezium的能力。

Flink CDC是由Flink社区开发的flink-cdc-connectors 的source组件,基于数据库日志的 Change Data Caputre 技术,实现了从 MySQL、PostgreSQL 等数据库全量和增量的一体化读取能力,并借助 Flink 优秀的管道能力和丰富的上下游生态,支持捕获多种数据库的变更,并将这些变更实时同步到下游存储。

什么是CDC?

这里也简单说明下,CDC为三个英文Change Data Capture(变更数据捕获)的缩写,核心思想是监测并捕获数据库的变动(包括数据或数据表的插入、更新以及删除等),将这些变更按发生的顺序完整记录下来,写入到消息中间件中以供其它服务进行订阅及消费。

CDC的分类

CDC主要分为基于查询的CDC和基于binlog的CDC,两者之间区别主要如下:

特性

  • 支持读取数据库快照,即使发生故障,也只进行一次处理,继续读取事务日志。
  • 数据流API的CDC连接器,用户可以在单个作业中消费多个数据库和表上的更改,而无需部署Debezium和Kafka。
  • 用于表/SQL API的CDC连接器,用户可以使用SQL DDL创建CDC源来监视单个表上的更改。

应用场景

  • 数据分发,将一个数据源分发给多个下游,常用于业务解耦、微服务。
  • 数据集成,将分散异构的数据源集成到数据仓库中,消除数据孤岛,便于后续的分析。
  • 数据迁移,常用于数据库备份、容灾等。

支持数据源

CDC Connectors for Apache Flink支持从多种数据库到Flink摄取快照数据和实时更改,然后转换和下沉到各种下游系统

支撑数据源包括如下:

实战

Flink DataStream方式代码示例

这里以MySQL作为数据源为例,通过flink-connector-mysql-cdc实现数据变更获取,先准备MySQL环境,这里复用前面<<实时采集MySQL数据之轻量工具Maxwell实操>>的文章环境,数据库有两个my_maxwell_01,my_maxwell_02,每个数据库都有相同account和product表。pom文件引入依赖

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion> <groupId>cn.itxs.flink</groupId>
<artifactId>flink-cdc-demo</artifactId>
<version>1.0-SNAPSHOT</version> <properties>
<maven.compiler.source>8</maven.compiler.source>
<maven.compiler.target>8</maven.compiler.target>
<flink.version>1.17.1</flink.version>
<flink.cdc.version>2.4.0</flink.cdc.version>
<mysql.client.version>8.0.29</mysql.client.version>
<fastjson.version>1.2.83</fastjson.version>
</properties> <dependencies>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-base</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-api-java-bridge</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-planner-loader</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-runtime</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>${mysql.client.version}</version>
</dependency>
<dependency>
<groupId>com.ververica</groupId>
<artifactId>flink-connector-mysql-cdc</artifactId>
<version>${flink.cdc.version}</version>
</dependency>
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>${fastjson.version}</version>
</dependency>
</dependencies> <build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>3.2.4</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<artifactSet>
<excludes>
<exclude>com.google.code.findbugs:jsr305</exclude>
<exclude>org.slf4j:*</exclude>
<exclude>log4j:*</exclude>
</excludes>
</artifactSet>
<filters>
<filter>
<!-- Do not copy the signatures in the META-INF folder.
Otherwise, this might cause SecurityExceptions when using the JAR. -->
<artifact>*:*</artifact>
<excludes>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>
</excludes>
</filter>
</filters>
<transformers combine.children="append">
<transformer implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer">
</transformer>
</transformers>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>

创建DataStreamDemo.java,

package cn.itxs.cdc;

import com.ververica.cdc.connectors.mysql.source.MySqlSource;
import com.ververica.cdc.debezium.JsonDebeziumDeserializationSchema;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; public class DataStreamDemo {
public static void main(String[] args) throws Exception {
MySqlSource<String> mySqlSource = MySqlSource.<String>builder()
.hostname("mysqlserver")
.port(3306)
.databaseList("my_maxwell_01,my_maxwell_02")
.tableList("my_maxwell_01.*,my_maxwell_02.product")
.username("root")
.password("12345678")
.deserializer(new JsonDebeziumDeserializationSchema()) // 将SourceRecord转换为JSON字符串
.build(); StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 开启checkpoint
env.enableCheckpointing(3000); env
.fromSource(mySqlSource, WatermarkStrategy.noWatermarks(), "MySQL Source")
// 设置平行度为4
.setParallelism(4)
.print().setParallelism(1); // 对sink打印使用并行性1来保持消息顺序 env.execute("Print MySQL Snapshot + Binlog");
}
}

由于上面flink的依赖配置provided,因此在IDEA中启动的话需要勾选下面标红的选项

启动程序,查看日志可以看到从mysql读取目前全量的数据,my_maxwell_02也只读取product表数据

修改两个库的表后可以看到相应修改信息,其中也确认my_maxwell_02的account没有读取变更数据。

{"before":{"id":7,"name":"李丹","age":44},"after":{"id":7,"name":"李丹","age":48},"source":{"version":"1.9.7.Final","connector":"mysql","name":"mysql_binlog_source","ts_ms":1687856595000,"snapshot":"false","db":"my_maxwell_01","sequence":null,"table":"account","server_id":1,"gtid":null,"file":"binlog.000025","pos":2798,"row":0,"thread":330184,"query":null},"op":"u","ts_ms":1687856598620,"transaction":null}
{"before":{"id":1,"name":"iphone13","type":1},"after":{"id":1,"name":"iphone14","type":1},"source":{"version":"1.9.7.Final","connector":"mysql","name":"mysql_binlog_source","ts_ms":1687856605000,"snapshot":"false","db":"my_maxwell_01","sequence":null,"table":"product","server_id":1,"gtid":null,"file":"binlog.000025","pos":3140,"row":0,"thread":330184,"query":null},"op":"u","ts_ms":1687856608748,"transaction":null}
{"before":{"id":1,"name":"iphone13","type":1},"after":{"id":1,"name":"iphone14","type":1},"source":{"version":"1.9.7.Final","connector":"mysql","name":"mysql_binlog_source","ts_ms":1687856628000,"snapshot":"false","db":"my_maxwell_02","sequence":null,"table":"product","server_id":1,"gtid":null,"file":"binlog.000025","pos":3486,"row":0,"thread":330184,"query":null},"op":"u","ts_ms":1687856631643,"transaction":null}

打包后放到集群上,执行

bin/flink run -m hadoop1:8081 -c cn.itxs.cdc.DataStreamDemo ./lib/flink-cdc-demo-1.0-SNAPSHOT.jar

可以看到的日志也成功输出表的全量的日志和刚才修改增量数据

如果需要断点续传可以使用状态后端存储来实现

        CheckpointConfig checkpointConfig = env.getCheckpointConfig();
checkpointConfig.setCheckpointStorage("hdfs://hadoop111:9000/checkpoints/flink/cdc");
checkpointConfig.setMinPauseBetweenCheckpoints(TimeUnit.SECONDS.toMillis(2));
checkpointConfig.setTolerableCheckpointFailureNumber(5);
checkpointConfig.setCheckpointTimeout(TimeUnit.MINUTES.toMillis(1));
checkpointConfig.setExternalizedCheckpointCleanup(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);

FlinkSQL方式代码示例

创建SqlDemo.java文件

package cn.itxs.cdc;

import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row; public class SqlDemo {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
tableEnv.executeSql("CREATE TABLE account (\n" +
" id INT NOT NULL,\n" +
" name STRING,\n" +
" age INT,\n" +
" PRIMARY KEY(id) NOT ENFORCED\n" +
") WITH (\n" +
" 'connector' = 'mysql-cdc',\n" +
" 'hostname' = 'mysqlserver',\n" +
" 'port' = '3306',\n" +
" 'username' = 'root',\n" +
" 'password' = '12345678',\n" +
" 'database-name' = 'my_maxwell_01',\n" +
" 'table-name' = 'account'\n" +
");"); Table table = tableEnv.sqlQuery("select * from account");
DataStream<Row> rowDataStream = tableEnv.toChangelogStream(table);
rowDataStream.print("account_binlog====");
env.execute();
}
}

启动程序,查看日志可以看到从mysql读取my_maxwell_01库account表的全量的数据,修改表数据也确认读取变更数据。

  • 本人博客网站IT小神 www.itxiaoshen.com

一文解开主流开源变更数据捕获技术之Flink CDC的入门使用的更多相关文章

  1. SQL Server 变更数据捕获(CDC)监控表数据

    一.本文所涉及的内容(Contents) 本文所涉及的内容(Contents) 背景(Contexts) 实现过程(Realization) 补充说明(Addon) 参考文献(References) ...

  2. SQL Server 变更数据捕获(CDC)

    标签:SQL SERVER/MSSQL SERVER/数据库/DBA/字段/对象更改 概述 变更数据捕获用于捕获应用到 SQL Server 表中的插入.更新和删除活动,并以易于使用的关系格式提供这些 ...

  3. SQL Server 2008中新增的 1.变更数据捕获(CDC) 和 2.更改跟踪

    概述 1.变更数据捕获(CDC)        每一次的数据操作都会记录下来 2.更改跟踪       只会记录最新一条记录   以上两种的区别:         http://blog.csdn.n ...

  4. SQL Server 2008中新增的变更数据捕获(CDC)和更改跟踪

    来源:http://www.cnblogs.com/downmoon/archive/2012/04/10/2439462.html  本文主要介绍SQL Server中记录数据变更的四个方法:触发器 ...

  5. CDC变更数据捕获

    CDC变更数据捕获 (2013-03-20 15:25:52)   分类: SQL SQL Server中记录数据变更的四个方法:触发器.Output子句.变更数据捕获(Change Data Cap ...

  6. SqlServer 2014该日志未截断,因为其开始处的记录是挂起的复制操作或变更数据捕获

    环境:AlwaysOn集群 操作系统:Windows Server 2008 R2 数据库: SQL Server 2014 错误提示:“该日志未截断,因为其开始处的记录是挂起的复制操作或变更数据捕获 ...

  7. 开源大数据生态下的 Flink 应用实践

    过去十年,面向整个数字时代的关键技术接踵而至,从被人们接受,到开始步入应用.大数据与计算作为时代的关键词已被广泛认知,算力的重要性日渐凸显并发展成为企业新的增长点.Apache Flink(以下简称 ...

  8. CDC-更改数据捕获存储过程 (Transact-SQL)-学习

    背景: 在SQLServer2008之前,对数据变更的捕获通常使用触发器.时间戳等低效高成本的功能来实现,所以很多系统都没有做数据变更或者仅仅对核心表做监控. 适用环境: 仅在SQLServer200 ...

  9. 开源大数据技术专场(下午):Databircks、Intel、阿里、梨视频的技术实践

    摘要: 本论坛第一次聚集阿里Hadoop.Spark.Hbase.Jtorm各领域的技术专家,讲述Hadoop生态的过去现在未来及阿里在Hadoop大生态领域的实践与探索. 开源大数据技术专场下午场在 ...

  10. ATC:一个能将主流开源框架模型转换为昇腾模型的神奇工具

    摘要:本文介绍了昇腾CANN提供的模型转换工具ATC,介绍了其功能.架构,并以具体样例介绍了该工具的基本使用方法以及常用设置. 本文分享自华为云社区<使用ATC工具将主流开源框架模型转换为昇腾模 ...

随机推荐

  1. 打造自己的ChatGPT:逐字打印的流式处理

    接口的延迟 在调用OpenAI的接口时,不免会有很慢的感觉,抛去地理位置上的网络延迟,大量的延迟往往发生在响应生成的过程中. 因此,如果使用同步接口的话,需要等待响应完全生成之后才能最终显示输出结果, ...

  2. Java并发(一)----进程、线程、并行、并发

    一.进程与线程 进程 程序由指令和数据组成,但这些指令要运行,数据要读写,就必须将指令加载至 CPU,数据加载至内存.在指令运行过程中还需要用到磁盘.网络等设备.进程就是用来加载指令.管理内存.管理 ...

  3. .NET周报 【4月第3期 2023-04-15】

    国内文章 Semantic Kernel 入门系列: Planner 规划器 https://www.cnblogs.com/xbotter/p/semantic_kernel_introductio ...

  4. javasec(五)URLDNS反序列化分析

    这篇文章介绍 URLDNS 就是ysoserial中⼀个利⽤链的名字,但准确来说,这个其实不能称作"利⽤链".因为其参数不是⼀个可以"利⽤"的命令,⽽仅为⼀个U ...

  5. Python 列表的修改、添加和删除元素

    列表修改.添加和删除元素 大多数创建的列表都是动态的,随程序的运行增删元素 修改列表元素 指定列表名和要修改的元素的索引,再指定要修改元素的新值 # 修改列表元素案例 motorcycles = [' ...

  6. pip 国内源地址

    1.使用方式 pip install 包名 -i 国内源地址 2.国内源地址 豆瓣(douban)  http://pypi.douban.com/simple/ 清华大学 https://pypi. ...

  7. 极速进化,光速转录,C++版本人工智能实时语音转文字(字幕/语音识别)Whisper.cpp实践

    业界良心OpenAI开源的Whisper模型是开源语音转文字领域的执牛耳者,白璧微瑕之处在于无法通过苹果M芯片优化转录效率,Whisper.cpp 则是 Whisper 模型的 C/C++ 移植版本, ...

  8. 聊一聊 Valgrind 监视非托管内存泄露和崩溃

    一:背景 1. 讲故事 只要是程序总会出现各种莫名其妙的问题,比如:非托管内存泄露,程序崩溃,在 Windows 平台上一般用微软自家的官方工具 App Verifier 就可以洞察,那问题出在 Li ...

  9. Pytorch数据操作

    1.Pytorch中tensor的生成与访问 可以使用arange()创建一个张量:如,torch.arange(12)创建0开始的前12个整数: 除非特殊指定,否则新的张量将存放在内存中,并采用CP ...

  10. 【CSS】画出宽度为1像素的线或边框

    由于多倍的设计图在移动设备上显示时会将设计图进行缩小到视口宽度,而1px的边框没有随着页面进行缩小而导致效果太粗,想要还原设计图1px的显示效果,因此需要一些方法来实现边框宽度小于1px. 实现方法很 ...