GPT生成式预训练Transformer架构应用实战
GPT生成式预训练Transformer架构应用实战
1. 引言
人工智能在过去几年发展迅速,深度学习和Transformer架构成为了当前人工智能领域的热点。GPT生成式预训练Transformer架构是深度学习中的一种新型架构,可以更好地处理自然语言生成任务,因此受到了广泛关注。本文将介绍GPT生成式预训练Transformer架构的基本概念、实现步骤、示例和应用,旨在帮助读者更好地理解和掌握这项技术。
2. 技术原理及概念
2.1 基本概念解释
Transformer架构是一种基于自注意力机制的深度神经网络架构,主要用于处理自然语言文本生成任务。GPT生成式预训练Transformer架构是在GPT模型的基础上进行了大量的预训练和优化,使得模型可以更好地生成自然语言文本。
2.2 技术原理介绍
GPT生成式预训练Transformer架构的核心部分是Transformer模型,包括self-attention和 feedforward neural network。self-attention机制可以自动计算输入序列中各个位置之间的关系,从而更好地提取特征。 feedforward neural network则用于计算特征向量,并输出文本序列。
2.3 相关技术比较
GPT生成式预训练Transformer架构与传统的Transformer架构相比,具有以下几个优点:
- 可以更好地处理自然语言文本生成任务,比如文本分类、机器翻译、文本摘要等。
- 具有更好的可扩展性和鲁棒性,可以在多个平台上实现部署。
- 具有更强的语言建模能力,可以更好地理解语言的结构和语义。
3. 实现步骤与流程
3.1 准备工作:环境配置与依赖安装
在开始GPT生成式预训练Transformer架构的实现之前,需要对环境中进行一些配置和安装。首先,需要安装所需的软件和框架,例如PyTorch、TensorFlow等,同时也需要安装所需的库和依赖项,例如GPT、PyTorch Transformer、PyTorch Text、PyTorch Natural Language等。
3.2 核心模块实现
GPT生成式预训练Transformer架构的核心模块是Transformer模型,需要实现的核心模块包括self-attention模块、 feedforward neural network模块和output module模块。其中,self-attention模块用于计算输入序列中各个位置之间的关系,从而更好地提取特征; feedforward neural network则用于计算特征向量,并输出文本序列;output module则用于将文本序列映射到相应的输出标签或文本。
3.3 集成与测试
在实现GPT生成式预训练Transformer架构之后,需要对模型进行集成和测试。集成是指将模型与其他深度学习模型和语言模型进行集成,以便更好地进行文本生成任务。测试则是对模型的性能进行评估和优化。
4. 示例与应用
4.1 实例分析
下面是一个简单的GPT生成式预训练Transformer架构示例,用于生成一段自然语言文本:
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
import torchvision.transforms as transforms
class GPTTransformer(nn.Module):
def __init__(self, n_encoder_layers, n_decoder_layers, n_encoder_embeddings, n_decoder_embeddings,
d_encoder_layers, d_decoder_layers, n_encoder_latent, n_decoder_latent,
num_encoder_layers_latent, num_decoder_layers_latent, dropout_rate=0.1,
dropout_p_encoder=0.2, dropout_p_decoder=0.2, batch_size=32, hidden_size=128,
num_classes=8, attention_dropout=0.1, fc_dropout=0.1, lr=0.0001, momentum=0.9,
learning_rate_factor=0.75, early_stopping_rounds=50, validation_split=0.1):
super(GPTTransformer, self).__init__()
# encoder embeddings
self.encoder_embeddings = models.mse_encoder_embeddings(d_encoder_layers, d_encoder_layers, n_encoder_layers)
self.encoder_latent = models.mse_encoder_latent(d_encoder_layers, d_encoder_layers, n_encoder_latent)
self.decoder_embeddings = models.mse_decoder_embeddings(d_decoder_layers, d_decoder_layers, n_decoder_layers)
self.decoder_latent = models.mse_decoder_latent(d_decoder_layers, d_decoder_layers, n_decoder_latent)
self.encoder_embeddings_latent = models.mse_encoder_embeddings_latent(d_encoder_layers, d_encoder_layers,
���n_encoder_layers_latent, n_decoder_layers_latent)
self.encoder_latent_latent = models.mse_encoder_latent_latent(d_encoder_layers, d_encoder_layers, n_encoder_layers_latent, n_decoder_layers_latent)
# encoder
self.encoder_layer = nn.Linear(self.encoder_embeddings_latent.size(1), num_classes)
self.encoder_layer_ = nn.Linear(self.encoder_embeddings_latent.size(1), 8)
self.encoder_layer_ = nn.Linear(self.encoder_layer_, n_encoder_layers)
self.encoder_layer_ = nn.Linear(self.encoder_layer_, self.encoder_latent.size(1))
self.encoder_layer_ = nn.Linear(self.encoder_layer_, n_encoder_layers_latent)
# decoder
self.decoder_layer = nn.Linear(self.decoder_latent.size(1), num_classes)
self.decoder_layer_ = nn.Linear(self.decoder_latent.size(1), 8)
self.decoder_layer_ = nn.Linear(self.decoder_layer_, n_decoder_layers)
self.decoder_layer_ = nn.Linear(self.decoder_layer_, self.encoder_latent.size(1))
self.decoder_layer_ = nn.Linear(self.decoder_layer_, num_classes)
# self-attention
self.self_attention = nn.Linear(self.encoder_latent.size(1), n_encoder_layers)
self.self_attention_ = nn.Linear(self.self_attention, self.encoder_latent.size(1))
# feedforward neural network
self.feedforward_ = nn.Linear(self.encoder_latent.size(1), 8)
self.feedforward_ = nn.Linear(self.feedforward_, self.encoder_latent.size(1))
# output module
self.output_ = nn.Linear(num_classes, 8)
self.output_ = nn.Linear(self.output_, num_classes)
4.2 应用场景介绍
GPT生成式预训练Transformer架构的应用非常广泛,可以用于自然语言处理、文本分类、机器翻译、文本生成等任务。以下是GPT生成式预训练Transformer架构的一些应用场景:
- 自然语言生成:GPT生成式预训练Transformer架构可以用于生成自然语言文本,比如新闻报道、产品描述、故事等。
- 文本分类:
GPT生成式预训练Transformer架构应用实战的更多相关文章
- 预训练语言模型的前世今生 - 从Word Embedding到BERT
预训练语言模型的前世今生 - 从Word Embedding到BERT 本篇文章共 24619 个词,一个字一个字手码的不容易,转载请标明出处:预训练语言模型的前世今生 - 从Word Embeddi ...
- 最强 NLP 预训练模型库 PyTorch-Transformers 正式开源:支持 6 个预训练框架,27 个预训练模型
先上开源地址: https://github.com/huggingface/pytorch-transformers#quick-tour 官网: https://huggingface.co/py ...
- 从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史(转载)
转载 https://zhuanlan.zhihu.com/p/49271699 首发于深度学习前沿笔记 写文章 从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史 张 ...
- zz从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史
从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史 Bert最近很火,应该是最近最火爆的AI进展,网上的评价很高,那么Bert值得这么高的评价吗?我个人判断是值得.那为什么 ...
- 预训练语言模型整理(ELMo/GPT/BERT...)
目录 简介 预训练任务简介 自回归语言模型 自编码语言模型 预训练模型的简介与对比 ELMo 细节 ELMo的下游使用 GPT/GPT2 GPT 细节 微调 GPT2 优缺点 BERT BERT的预训 ...
- 【转载】BERT:用于语义理解的深度双向预训练转换器(Transformer)
BERT:用于语义理解的深度双向预训练转换器(Transformer) 鉴于最近BERT在人工智能领域特别火,但相关中文资料却很少,因此将BERT论文理论部分(1-3节)翻译成中文以方便大家后续研 ...
- 【译】深度双向Transformer预训练【BERT第一作者分享】
目录 NLP中的预训练 语境表示 语境表示相关研究 存在的问题 BERT的解决方案 任务一:Masked LM 任务二:预测下一句 BERT 输入表示 模型结构--Transformer编码器 Tra ...
- 预训练中Word2vec,ELMO,GPT与BERT对比
预训练 先在某个任务(训练集A或者B)进行预先训练,即先在这个任务(训练集A或者B)学习网络参数,然后存起来以备后用.当我们在面临第三个任务时,网络可以采取相同的结构,在较浅的几层,网络参数可以直接加 ...
- 知识图谱顶会论文(KDD-2022) kgTransformer:复杂逻辑查询的预训练知识图谱Transformer
论文标题:Mask and Reason: Pre-Training Knowledge Graph Transformers for Complex Logical Queries 论文地址: ht ...
- 文本分类实战(一)—— word2vec预训练词向量
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
随机推荐
- cephadm 安装部署 ceph 集群
介绍 手册: https://access.redhat.com/documentation/zh-cn/red_hat_ceph_storage/5/html/architecture_guide/ ...
- 前端里那些你不知道的事儿之 【window.onload】
作者:京东科技 孙凯 一.前言 相信很多前端开发者在做项目时同时也都做过页面性能优化,这不单是前端的必备职业技能,也是考验一个前端基础是否扎实的考点,而性能指标也通常是每一个开发者的绩效之一.尤其马上 ...
- switch case 穿透 示例
public class SwitchCase { //判断输入的月份属于第几季度 public static void main(String[] args) { //随机获得 1-12个月份中的一 ...
- 面向接口编程实践之aspnetcoreapi的抽象
最为一名越过菜鸟之后的开发,需要做接口开发.下面做一个纯粹的接口编程的实例demo,仅仅是一个webapi接口的抽象. 下面是代码接口,AbsEFWork是webapi,BaseEntityFrame ...
- 如何在SpringBoot项目中兼容Jersey和SpringMVC框架?
文章目录 Jersey框架介绍 常用的注解: SpringBoot中SpringMVC兼容Jersey 整合Jersey REST(Representational State Transfer)表象 ...
- Java读取数据库表(二)
Java读取数据库表(二) application.properties db.driver.name=com.mysql.cj.jdbc.Driver db.url=jdbc:mysql://loc ...
- 用R语言进行时间序列ARMA模型分析
应用时间序列 时间序列分析是一种重要的数据分析方法,应用广泛.以下列举了几个时间序列分析的应用场景: 1.经济预测:时间序列分析可以用来分析经济数据,预测未来经济趋势和走向.例如,利用历史股市数据和经 ...
- React笔记-组件通信(六)
React笔记-组件通信(六) props概念 props是组件之间通讯的纽带 props也是组件中内置的一个属性 通过父级组件传入 在类组件里 可以直接通过this.props获取 注意: prop ...
- 🚀 jdbc-plus是一款基于JdbcTemplate增强工具包, 已实现分页、多租户、动态表名等插件,可与mybatis、mybatis-plus等混合使用
jdbc-plus简介 jdbc-plus是一款基于JdbcTemplate增强工具包, 基于JdbcTemplate已实现分页.多租户.动态表名等插件,可自定义扩展插件,可与mybatis.myba ...
- 2022-11-12:以下rust语言代码中,结构体S实现了crate::T1::T2的方法,如何获取方法列表?以下代码应该返回[“m1“,“m2“,“m5“],顺序不限。m3是S的方法,但并不属于c
2022-11-12:以下rust语言代码中,结构体S实现了crate::T1::T2的方法,如何获取方法列表?以下代码应该返回["m1","m2"," ...