题目链接https://agc038.contest.atcoder.jp/tasks/agc038_c?lang=en

题意:给定一个数组,求这个数组中所有数对的LCM之和。

分析:网上看到了很多反演的解法,但是本题也可以通过埃氏筛在\(O(nlnlnn)\)的复杂度下解决。大致做法就是根据\(a_i \leq 1000000\),我们得到\(gcd(a_i, a_j) \leq 1000000\),于是可以通过枚举gcd来解决本题。实现参考代码,埃氏筛的思路就是求出gcd的值在\([1,
1000000]\)范围内的所有\(pair<a_i, a_j>\)的乘积之和,并去重,最后每项再乘逆元即可。

AC代码

#pragma GCC target("avx")
#pragma GCC optimize(3)
#pragma GCC optimize("Ofast")
#include <bits/stdc++.h>
#define SIZE 1000100
#define rep(i, a, b) for (long long i = a; i <= b; ++i)
#define int long long
using namespace std;
void io() { ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); }
const int mod = 998244353;
int n, inv[SIZE] = { 0,1 }, cnt[SIZE], tp, maxx = 0, ans[SIZE], res = 0;
signed main() {
io(); cin >> n;
rep(i, 1, n) {
cin >> tp;
cnt[tp]++;
maxx = max(maxx, tp);
}
rep(i, 2, maxx) inv[i] = (mod - mod / i) * inv[mod % i] % mod;
for (int i = maxx; i; --i) { //求出gcd为i的所有pair的乘积之和
int s1 = 0, s2 = 0;
for (int j = i; j <= maxx; j += i) {
s1 = (s1 + cnt[j] * j % mod) % mod;
s2 = (s2 + cnt[j] * j % mod * j % mod) % mod;
}
ans[i] = (s1 * s1 % mod - s2 + mod) % mod;
// s1 - s2 的作用是使得gcd为j的pair对数为 cnt * (cnt - 1)
for (int j = i + i; j <= maxx; j += i) {
ans[i] = (ans[i] - ans[j] + mod) % mod;
//去重,删除gcd为ik (k > 1)的pair
}
}
rep(i, 1, maxx) { //计算 ans[i] / i % mod
res = (res + ans[i] * inv[i] % mod) % mod;
}
cout << res * inv[2] % mod; //枚举了两遍gcd,res / 2
}

AtCoder AGC038 C-LCMs 题解的更多相关文章

  1. AtCoder ExaWizards 2019 简要题解

    AtCoder ExaWizards 2019 简要题解 Tags:题解 link:https://atcoder.jp/contests/exawizards2019 很水的一场ARC啊,随随便便就 ...

  2. AtCoder Beginner Contest 154 题解

    人生第一场 AtCoder,纪念一下 话说年后的 AtCoder 比赛怎么这么少啊(大雾 AtCoder Beginner Contest 154 题解 A - Remaining Balls We ...

  3. AtCoder Beginner Contest 153 题解

    目录 AtCoder Beginner Contest 153 题解 A - Serval vs Monster 题意 做法 程序 B - Common Raccoon vs Monster 题意 做 ...

  4. AtCoder Beginner Contest 177 题解

    AtCoder Beginner Contest 177 题解 目录 AtCoder Beginner Contest 177 题解 A - Don't be late B - Substring C ...

  5. AtCoder Beginner Contest 184 题解

    AtCoder Beginner Contest 184 题解 目录 AtCoder Beginner Contest 184 题解 A - Determinant B - Quizzes C - S ...

  6. AtCoder Beginner Contest 173 题解

    AtCoder Beginner Contest 173 题解 目录 AtCoder Beginner Contest 173 题解 A - Payment B - Judge Status Summ ...

  7. AtCoder Beginner Contest 172 题解

    AtCoder Beginner Contest 172 题解 目录 AtCoder Beginner Contest 172 题解 A - Calc B - Minor Change C - Tsu ...

  8. AtCoder Beginner Contest 169 题解

    AtCoder Beginner Contest 169 题解 这场比赛比较简单,证明我没有咕咕咕的时候到了! A - Multiplication 1 没什么好说的,直接读入两个数输出乘积就好了. ...

  9. AtCoder Beginner Contest 148 题解

    目录 AtCoder Beginner Contest 148 题解 前言 A - Round One 题意 做法 程序 B - Strings with the Same Length 题意 做法 ...

随机推荐

  1. Python标准库Random

    基本方法 获取一个[0,1)的随机浮点数: import random print(random.random()) #输出 0.6701488343121276 获取指定区间的随机浮点数: impo ...

  2. vscode里的NPM脚本

    NPM脚本的开启与关闭 点击设置-功能-任务 控制为所有任务提供程序扩展启用"提供任务".如果"任务:运行任务"命令速度较慢,则禁用任务提供程序的自动检测可能会 ...

  3. HTML的文档设置标记

    1.格式标记 <br/> 强制换行标记 <p> 换段落标记 换段落,由于多个空格和回车在HTML中会被等效为一个空格,所以HTML中要换段落就要用<p>,<p ...

  4. Python获取当前文件路径及父文件路径

    import os # 当前文件的路径 1.os.getcwd(): 2.os.path.realpath(__file__) # 当前文件的父路径 1.pwd=os.getcwd()   os.pa ...

  5. Django 初试水(一)

    2020年注定是一个不平凡的一年!坚持就是胜利,一起加油! 至于为什么使用 Django,也不想说太多.个人喜欢,这里不做介绍.直接进入主题.show me the code!!! python 的环 ...

  6. 【转载】Pig语法进阶

    转自:http://www.cnblogs.com/siwei1988/archive/2012/08/06/2624912.html Pig Latin是一种数据流语言,变量的命名规则同java中变 ...

  7. Microsonf visual c++ 14+ 离线内网安装

    内网离线安装方法:先下载官方的visualcppbuildtools: <br  href=http://go.microsoft.com/fwlink/?LinkId=691126 >& ...

  8. h264 RTP STAP-A单时间聚合包

    参考官方文档:http://www.rosoo.net/Files/UpFiles/RsProduct/avtools/2009-4/2009491562537854.txt 聚合包的RTP荷载格式的 ...

  9. 四种常见的APP分类界面布局设计案例学习

    相信各位对于APP设计,已经很熟练啦.如何在熟练的基础上提高我们界面的优美度,或者是进行APP界面的迭代设计. 重构APP设计布局是我们必须要经历的一个过程. 在之前,学习UI设计的时候,经常要接触到 ...

  10. 大数据-Storm

    Storm 流式处理框架 Storm是实时的,分布式,高容错的计算系统.java+cljoure Storm常驻内存,数据在内存中处理不经过磁盘,数据通过网络传输. 底层java+cljoure构成, ...