题目传送门

分析:

开始玩一个小小的trick

我们发现\(f(n)=\sum_{d|n}\mu(d)\cdot d\)是一个积性函数

所以:

\(~~~~f(n)=\prod f(p_i^{a_i})\)
\(~~~~f(gcd(x,y))\cdot f(lcm(x,y))=\prod f(p_i^{min(a_i,b_i)})\cdot f(p_i^{max(a_i,b_i)})\)

可以疯狂使用交换律然后。。。

\(~~~~\prod f(p_i^{min(a_i,b_i)})\cdot f(p_i^{max(a_i,b_i)})=f(x)\cdot f(y)\)

接下来就好办了,大力推:

\(~~~~\sum_{i=1}^{n}\sum_{j=1}^{n}f(gcd(i,j))\cdot f(lcm(i,j))\)
\(=\sum_{i=1}^{n}\sum_{j=1}^{n}f(i)\cdot f(j)\)
\(=(\sum_{i=1}^{n}f(i))^2\)

我们求里面的:

\(~~~~\sum_{i=1}^{n}\sum_{d|i}\mu(d)\cdot d\)
\(=\sum_{d=1}^{n}\mu(d)\cdot d\cdot \lfloor\frac{n}{d}\rfloor\)

分块处理\(\lfloor\frac{n}{d}\rfloor\)

后面的老套路,卷一个\(Id\)

\(~~~~\sum_{i=1}^{n}\sum_{d|i}\mu(d)\cdot d\cdot \frac{i}{d}=\sum_{i=1}^{n}i\sum_{d|i}\mu(d)=1\)
\(=\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\mu(i)\cdot i\)

把\(d=1\)提出来:

\(~~~~\sum_{i=1}^{n}\mu(i)\cdot i=1-\sum_{d=2}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\mu(i)\cdot i\)
\(~~~~S(n)=1-\sum_{d=2}^{n}d\cdot S(\lfloor\frac{n}{d}\rfloor)\)

然后杜教筛就好了

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<iostream>
#include<map>
#include<string> #define maxn 100005
#define INF 0x3f3f3f3f
#define MOD 1000000007
#define inv2 500000004 using namespace std; inline long long getint()
{
long long num=0,flag=1;char c;
while((c=getchar())<'0'||c>'9')if(c=='-')flag=-1;
while(c>='0'&&c<='9')num=num*10+c-48,c=getchar();
return num*flag;
} long long N;
long long pri[maxn],cnt,np[maxn],mu[maxn];
long long ans;
map<long long,long long>M; inline void init()
{
mu[1]=1;
for(int i=2;i<maxn;i++)
{
if(!np[i])pri[++cnt]=i,mu[i]=-1;
for(int j=1;j<=cnt&&i*pri[j]<maxn;j++)
{
np[i*pri[j]]=1;
if(i%pri[j]==0)break;
mu[i*pri[j]]=-mu[i];
}
}
for(int i=1;i<maxn;i++)(mu[i]*=i)%=MOD;
for(int i=1;i<maxn;i++)(mu[i]+=mu[i-1])%=MOD;
} inline long long getans(long long x)
{
if(x<maxn)return mu[x];
if(M.count(x))return M[x];
long long num=1;
for(long long i=2,j;i<=x;i=j+1)
{
j=x/(x/i);
(num+=MOD-(i+j)*(j-i+1)%MOD*inv2%MOD*getans(x/i))%=MOD;
}
return M[x]=num;
} int main()
{
N=getint();
init();
for(long long i=1,j;i<=N;i=j+1)
{
j=N/(N/i);
(ans+=(N/i)*(getans(j)-getans(i-1)))%=MOD;
}
printf("%lld\n",(ans*ans%MOD+MOD)%MOD);
}

51Nod 2026 Gcd and Lcm的更多相关文章

  1. 【51nod】2026 Gcd and Lcm

    题解 话说LOJ说我今天宜学数论= =看到小迪学了杜教筛去蹭了一波小迪做的题 标解的杜教筛的函数不懂啊,怎么推的毫无思路= = 所以写了个复杂度稍微高一点的?? 首先,我们发现f是个积性函数,那么我们 ...

  2. 51nod 1575 Gcd and Lcm

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1575 万年巨坑终于填掉了…… 首先是煞笔西瓜的做题历程O_O. ...

  3. HDOJ 4497 GCD and LCM

    组合数学 GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) ...

  4. hdu 4497 GCD and LCM 数学

    GCD and LCM Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=4 ...

  5. GCD 与 LCM UVA - 11388

    题目链接: https://cn.vjudge.net/problem/23709/origin 本题其实有坑 数据大小太大, 2的32次方,故而一定是取巧的算法,暴力不可能过的 思路是最大公因数的倍 ...

  6. 简单数论总结1——gcd与lcm

    并不重要的前言 最近学习了一些数论知识,但是自己都不懂自己到底学了些什么qwq,在这里把知识一并总结起来. 也不是很难的gcd和lcm 显而易见的结论: 为什么呢? 根据唯一分解定理: a和b都可被分 ...

  7. poj 2429 GCD &amp; LCM Inverse 【java】+【数学】

    GCD & LCM Inverse Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9928   Accepted:  ...

  8. HDU 4497 GCD and LCM (合数分解)

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total ...

  9. hdu4497 GCD and LCM

    GCD and LCM Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others) Total S ...

随机推荐

  1. 螺旋矩阵O(1)根据坐标求值

    传送门 洛谷2239 •题意 从矩阵的左上角(第11行第11列)出发,初始时向右移动: 如果前方是未曾经过的格子,则继续前进,否则右转: 重复上述操作直至经过矩阵中所有格子. 根据经过顺序,在格子中依 ...

  2. 如何在MPlayer上支持RTSP

    http://www.live555.com/mplayer/ 请按照如下步骤 下载 "LIVE555 Streaming Media" l的库的源码, 解压后 将"li ...

  3. DQN 强化学习

    pytorch比tenserflow简单. 所以我们模仿用tensorflow写的强化学习. 学习资料: 本节的全部代码 Tensorflow 的 100行 DQN 代码 我制作的 DQN 动画简介 ...

  4. VMware Workstation 与 Device/Credential Guard 不兼容.在禁用 Device/Credenti

    出现问题的原因: 原因一.出现此问题的原因是Device Guard或Credential Guard与Workstation不兼容. 原因二.Windows系统的Hyper-V不兼容导致. 解决方案 ...

  5. webhook功能概述

    1.什么是webhook? webhooks是一个api概念,是微服务api的使用范式之一,也被成为反向api,即:前端不主动发送请求,完全由后端推送. 举个常用例子,比如你的好友发了一条朋友圈,后端 ...

  6. Spring||Interview

    1.依赖注入(DI)(IOC) 对象本身不负责对象的创建和维护,将控制权转交给外部的容器实现,降低程序的耦合度,只提供java方法让容器决定依赖关系,依赖关系的对象通过JavaBean属性或者构造函数 ...

  7. lnmp安装部署-mysql5.6+centos6.8+php7.1+nginx1.9

    1.准备工作: 1)把所有的软件安装在/Data/apps/,源码包放在/Data/tgz/,数据放在/Data/data,日志文件放在/Data/logs,项目放在/Data/webapps, mk ...

  8. 20191024-2 Alpha阶段贡献分配

    此作要求参见: https://edu.cnblogs.com/campus/nenu/2019fall/homework/9858 要求1 每位组员的贡献分值 罗杨美慧:9 徐丽君:11 魏鑫:12 ...

  9. 【小技巧】object上显示div

    这个现在不大常用了,就是object在页面中显示的优先级最高,其他层想覆盖在其上面,设置的z-index再高都不管用,解决办法是在层中加一个iframe.不多说了,直接记录下代码吧,估计以后用到的机率 ...

  10. $Luogu4403$ 秦腾与教学评估 二分

    $Luogu$ $Description$ 有$N$个数列,求一个$x$,$x$在各个数列中的出现次数之和为奇数.这样的$x$最多存在$1$个.若不存在则输出Poor QIN Teng:( $Sol$ ...