Description

\(Mirko\) 和 \(Slavko\) 喜欢一起去远足。

\(Mirko\) 偏好攀登山峰,而 \(Slavko\) 偏爱山谷。因此每次他们登上一座山峰后,\(Slavko\) 会决定下次去哪个山谷玩(如果存在索道),同理每次游玩一个山谷后,\(Mirko\) 会决定下次去攀登哪座山峰(如果存在索道)。于是,不会出现连续两次游玩山峰或者连续两次游玩山谷的情况。为了享受更多乐趣,他们不会去已经去过的景点。

如果他们逛完一个景点后,发现接下来无法乘坐索道前往任何可行的景点,那么这次旅行就结束了。这时,如果最终景点是山峰,则 \(Mirko\) 获胜,否则 \(Slavko\) 获胜。

假设两个人都足够聪明,请你计算:从任意一座山峰开始旅行,最终谁会获胜?

Input

第一行为两个正整数 \(N\)、\(M\),表示有 \(N\) 座山峰、\(N\) 个山谷和 \(M\) 条索道。

接下来 \(M\) 行,每行两个正整数 \(vi\) 、\(di\) ,表示在第 \(vi\) 座山峰和第 \(di\) 个山谷之间存在一条索道。任意一对山峰和山谷之间至多有一条索道。

Output

输出 \(N\) 行,每行一个字符串。第 \(i\) 行的字符串表示,假如旅行出发点是第 \(i\) 座山峰,那么最终谁会获胜。注意区分大小写。

Sample Input

4 5

2 2

1 2

1 1

1 3

4 2

Sample Output

Slavko

Mirko

Mirko

Mirko

HINT

【数据规模与约定】

对于 \(30%\) 的数据,\(1 \leq N \leq 10\) 。

对于额外 \(20%\) 的数据,任意两个景点之间至多存在一条简单路径,构成一个森林。

对于 \(100%\) 的数据,\(1 \leq N, M \leq 5000, M \leq N ^2\)。

来源:\(NOI2019\) 北京队集训


想法

考试的时候当然没想出来,就写了个50分的暴力(树形 \(dp\) +状压 \(dp\)),结果因为数组开小了爆零 QwQ

正解 %%% \(hzk\) 大神

比较套路,考虑做个二分图的最大匹配。

从某个山峰处出发,若当前没有匹配,且找不到增广路,则 \(Mirko\) 赢。

为什么呢?因为不管走到哪个山谷点,都可以顺着当前的匹配边走到山峰,直到到某个山峰没有出路。

那么,得出结论:

从某个山峰出发,若这个山峰在某个最大匹配中未被匹配,则 \(Mirko\) 赢,否则 \(Slavko\) 赢。

怎么判断呢?

先匈牙利算法跑出一个最大匹配,然后从每个非匹配的山峰点往前找增广路,找的过程中经过的山峰点都可能在某个最大匹配中未被匹配(可以这样理解,当前未匹配的点一次顺着当前找的过程中已经过的边匹配,这个新点就变成了此时的未匹配点)


代码

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring> using namespace std; int read(){
int x=0;
char ch=getchar();
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)) x=x*10+ch-'0',ch=getchar();
return x;
} const int N = 5005;
struct node{
int v;
node *nxt;
}pool[N],*h[N*2];
int cnt;
void addedge(int u,int v){
node *p=&pool[++cnt];
p->v=v;p->nxt=h[u];h[u]=p;
} int n,m;
int con[N],vis[N];
bool find(int u){
int v;
for(node *p=h[u];p;p=p->nxt){
if(vis[v=p->v-n]) continue;
vis[v]=1;
if(!con[v] || find(con[v])){
con[v]=u;
return true;
}
}
return false;
} int no[N];
void getno(int u){
int v;
no[u]=1;
for(node *p=h[u];p;p=p->nxt){
if(vis[v=p->v-n]) continue;
vis[v]=1;
getno(con[v]);
}
} int main()
{
int u,v;
n=read(); m=read();
for(int i=0;i<m;i++) {
u=read(); v=read()+n;
addedge(u,v);
} for(int i=1;i<=n;i++){
memset(vis,0,sizeof(vis));
if(find(i)) no[i]=0;
else{
no[i]=1;
memset(vis,0,sizeof(vis));
getno(i);
}
} for(int i=1;i<=n;i++)
if(no[i]) printf("Mirko\n");
else printf("Slavko\n"); return 0;
}

[洛谷P4617] [COCI2017-2018#5] Planinarenje的更多相关文章

  1. LOJ 2743(洛谷 4365) 「九省联考 2018」秘密袭击——整体DP+插值思想

    题目:https://loj.ac/problem/2473 https://www.luogu.org/problemnew/show/P4365 参考:https://blog.csdn.net/ ...

  2. 洛谷P4382 [八省联考2018]劈配(网络流,二分答案)

    洛谷题目传送门 说不定比官方sol里的某理论最优算法还优秀一点? 所以\(n,m\)说不定可以出到\(1000\)? 无所谓啦,反正是个得分题.Orz良心出题人,暴力有70分2333 思路分析 正解的 ...

  3. 2018.07.01洛谷P2617 Dynamic Rankings(带修主席树)

    P2617 Dynamic Rankings 题目描述 给定一个含有n个数的序列a[1],a[2],a[3]--a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[i ...

  4. 2018.07.17 洛谷P1368 工艺(最小表示法)

    传送门 好的一道最小表示法的裸板,感觉跑起来贼快(写博客时评测速度洛谷第二),这里简单讲讲最小表示法的实现. 首先我们将数组复制一遍接到原数组队尾,然后维护左右指针分别表示两个即将进行比较的字符串的头 ...

  5. bzoj5248(洛谷4363)(2018九省联考)一双木棋

    题目:https://www.luogu.org/problemnew/show/P4363 一种考虑状态数的方法:有几个用了k个格子的列,就在第k个0的左边插入几个1: 这也是求不降序列的个数的方法 ...

  6. 2018.10.30 一题 洛谷4660/bzoj1168 [BalticOI 2008]手套——思路!问题转化与抽象!+单调栈

    题目:https://www.luogu.org/problemnew/show/P4660 https://www.lydsy.com/JudgeOnline/problem.php?id=1168 ...

  7. [洛谷P1842] 奶牛玩杂技

    题目类型:贪心+证明,经典题 传送门:>Here< 题意:有\(N\)头奶牛,每个奶牛有一个重量\(W[i]\),力量\(S[i]\).定义每个奶牛的压扁程度为排在它前面的所有奶牛的总量之 ...

  8. 洛谷P3375 [模板]KMP字符串匹配

    To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...

  9. 洛谷 P2058 海港 解题报告

    P2058 海港 题目描述 小K是一个海港的海关工作人员,每天都有许多船只到达海港,船上通常有很多来自不同国家的乘客. 小K对这些到达海港的船只非常感兴趣,他按照时间记录下了到达海港的每一艘船只情况: ...

随机推荐

  1. Codevs 四子连棋 (迭代加深搜索)

    题目描述 Description 在一个4*4的棋盘上摆放了14颗棋子,其中有7颗白色棋子,7颗黑色棋子,有两个空白地带,任何一颗黑白棋子都可以向上下左右四个方向移动到相邻的空格,这叫行棋一步,黑白双 ...

  2. 2019-9-24-dotnet-remoting-使用事件

    title author date CreateTime categories dotnet remoting 使用事件 lindexi 2019-09-24 15:39:26 +0800 2018- ...

  3. C# 字典 Dictionary 的 TryGetValue 与先判断 ContainsKey 然后 Get 的性能对比

    本文使用 benchmarkdotnet 测试字典的性能,在使用字典获取一个可能存在的值的时候可以使用两个不同的写法,于是本文分析两个写法的性能. 判断值存在,如果值存在就获取值,可以使用下面两个不同 ...

  4. CF809D Hitchhiking in the Baltic States

    CF809D Hitchhiking in the Baltic States CF809D 长度为n的序列{xi},n<=3e5,范围在(li,ri)之间,求LIS最长是多长g(i,l)表示前 ...

  5. [vue/no-parsing-error] Parsing error: x-invalid-end-tag.eslint-plugin-vue

    [vue/no-parsing-error] Parsing error: x-invalid-end-tag.eslint-plugin-vue   解决方案:vscode里面选择设置->搜索 ...

  6. apache WEB服务器安装(包括虚拟主机)

    一.apache下载编译安装 yum install apr apr-devel apr-util apr-util-devel gcc-c++ wget tar -y cd /usr/src wge ...

  7. CentOS遇到Qt编译问题(error: cannot find -lGL)

    1.安装Qt,进入CentOS系统的终端,依次执行以下命令 chmod +x qt-opensource-Linux-x64-5.5.1.run ./qt-opensource-linux-x64-5 ...

  8. 更新到@vue/cli 4.1.1版本的前端开发前的准备

    一.概念简述 1.node.js目的是提供一个JS的运行环境. 2.npm(node package manager)是一个JS包管理器. 二.检查自己的电脑是否已安装相关配置 1.查看node.js ...

  9. JAVA优化篇 如何找到运行缓慢的线程

    引入 JAVA提供了一些分析DUMP的工具,比如jmap,visualvm 等 JAVA还有寻找线程状态的工具,jstack等 数据库也有检查连接数,连接状态的命令,status,processlis ...

  10. IDEA模板快捷键

    2.1 psvm:可生成 main 方法 2.2 sout:System.out.println() 快捷输出 类似的: soutp=System.out.println("方法形参名 = ...