正解:期望

解题报告:

传送门!

先放下题意,,,已知有总共有$n$张卡片,每次有$p_i$的概率抽到第$i$张卡,求买所有卡的期望次数

$umm$看到期望自然而然想$dp$?

再一看,哇,$n\leq 20$,那不就,显然考虑状压$dp$?

转移也很$easy$鸭,设$f_{s}$表示已经获得的卡片状态为$s$时候的期望次数

不难得到转移方程,$f_s=\sum_{i\notin{S}}f_{s|\{i\}}\cdot p_i+(1-\sum_{i\notin{S}}p_i)\cdot f_s+1$

(挺显然的就只瞎解释下,,,就状态是$s$之后,再抽一次,有可能抽到需要的$i$,就是$f_{s|\{i\}}\cdot p_i$,也可能没抽到需要的$i$,就是$(1-\sum_{i\notin{S}}p_i)\cdot f_s$,然后不管抽没抽到反正都抽了一次所以还要+1,就$over$辣!

变形下就是$\sum_{i\notin{S}}p_i\cdot f_s=\sum_{i\notin{S}}f_{s|\{i\}}\cdot p_i+1$

再除过去就$get$了$f$的转移方程辣

然后就做完辣,,,?

放下代码趴$QwQ$

#include<bits/stdc++.h>
using namespace std;
#define il inline
#define gc getchar()
#define ri register int
#define rb register bool
#define rc register char
#define rp(i,x,y) for(ri i=x;i<=y;++i)
#define my(i,x,y) for(ri i=x;i>=y;--i) const int N=;
int n,tot;
double f[<<N],p[N]; int main()
{
while(scanf("%d",&n)!=EOF)
{
rp(i,,n-)scanf("%lf",&p[i]);
tot=(<<n)-;f[tot]=;
my(i,tot-,)
{
double sum=;f[i]=;
rp(j,,n-)if(~i&(<<j))f[i]+=p[j]*f[i|(<<j)],sum+=p[j];
f[i]=(f[i]+)/sum;
}
printf("%.4lf\n",f[]);
}
return ;
}

昂对了,$attention$,这题$Sample Output$是三位小数嘛,但是$output$里说了,当相差小于等于1$e$-4的时候是可以接受的,也就是说输出要保留到四位小数昂$QwQ$!

$upd$:

$get$了一个神奇的容斥,,,$orzorz$神仙$hl$

尝试自己理解了下结果好像失败辽,,,

先写下结论

就,$min-max$容斥中提出了这样一个式子:$E(\max\{x_1,x_2...x_n\})=\sum_{S}(-1)^{|S|+1}E(\min_{i\in{S}}\{x_i\})$

然后此处如果定义$x_i$表示第$i$张牌第一次出现的轮号,那其实就相当于这个$ E(\max\{x_1,x_2...x_n\})$指的就是最后的$ans$了

然后又有$\min_{i\in{S}}x_i=\frac{1}{\sum_{i\in{S}}p_i}$

然后用$dfs$枚下子集

就做完辣,,,?复杂度要好看很多呢$QwQ$

(神仙$hl$手推出了$min-max$容斥,,,太神了%%%

$code$就不放了知道思想的话具体实现还是挺$easy$的,有兴趣的去神仙$hl$的博客看趴,,,$QAQ$

昂然后关于这个$min-max$容斥,,,$gql$可能会尝试瞎证下$QwQ$,,,大概会新开篇博客,等下写完放链接趴$QAQ$←对不起咕了$TT$

随机推荐

  1. Mac OSX原生读写NTFS功能开启方法

    macOX系统内建的NTFS支持默认只能读不能写 原生读写NTFS,需要自行终端命令手动开启 1. 插上磁盘 此时Mac桌面应该会显示出插入的磁盘,但是当你想把文件拖入磁盘的时候,发现是不能拖进去的, ...

  2. mapping数据列表

  3. SSH基本原理

    SSH原理与运用:远程登录 作者: 阮一峰 年12月21日 SSH是每一台Linux电脑的标准配置. 随着Linux设备从电脑逐渐扩展到手机.外设和家用电器,SSH的使用范围也越来越广.不仅程序员离不 ...

  4. HZOJ 礼物

    其实是比较简单的一道期望状压dp,考试时一直在想数组表示概率,然而最后出的数总是小于一,于是无奈的把第一个点判掉放弃了其他点. 设f[i]为状态为i时到全部买到的期望次数,$f[i]=∑f[j]*p[ ...

  5. iptables 删除规则

    iptables -nL --line-number显示每条规则链的编号 iptables -D FORWARD 2删除FORWARD链的第2条规则,编号由上一条得知.如果删除的是nat表中的链,记得 ...

  6. vue2——指令渲染,{{}}渲染

    博客地址 :https://www.cnblogs.com/sandraryan/ 声明式的渲染,以{{}}的形式调用数据 <!DOCTYPE html> <html lang=&q ...

  7. Codeforces Round #179 (Div. 1 + Div. 2)

    A. Yaroslav and Permutations 值相同的个数不能超过\(\lfloor \frac{n + 1}{2} \rfloor\). B. Yaroslav and Two Stri ...

  8. P1103 走迷宫三

    题目描述 大魔王抓住了爱丽丝,将她丢进了一口枯井中,并堵住了井口. 爱丽丝在井底发现了一张地图,他发现他现在身处一个迷宫当中,从地图中可以发现,迷宫是一个N*M的矩形,爱丽丝身处迷宫的左上角,唯一的出 ...

  9. 2018-8-10-VisualStudio-合并代码文件

    title author date CreateTime categories VisualStudio 合并代码文件 lindexi 2018-08-10 19:16:52 +0800 2018-2 ...

  10. win2d 渐变颜色

    本文告诉大家如何在 win2d 使用渐变颜色 线条渐变 在 UWP 的 Win2d 使用渐变颜色需要 CanvasLinearGradientBrush 做颜色,本文告诉大家如何在 win2d 使用 ...