和hdu2204有点像

这题要特别注意精度问题,如pow的精度需要自己搞一下,然后最大的longlong可以设为1<<31

/*
只要求[1,n]范围内的sum即可
那么先枚举幂次k[1,63]
然后求 x^k<=n,x的最大取值sum[i](这里要扩大一下pow的精度)
然后进行容斥,j%i==0,si-=sj
*/
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define INF (ll)1<<31
#define esp 1e-18
ll sum[];
const double inf=1e18+;
/*
ll Pow(ll a,ll b){//防越界的快速幂
ll res=1;
while(b){
if(b%2){
double judge=1.0*inf/res;
if(a>judge)return -1;//必须先判断res*a是否会越界
res=res*a;
}
b>>=1;
if(a>INF && b>0)return -1;//判断a是否越界了
a=a*a;
}
return res;
} ll calc(ll k,ll n){
ll x=(ll)pow(n,1.0/k),t,p;
p=Pow(x,k);
if(p==n)return x;//刚好相等
if(p>n || p==-1) x--;//越界了
else {//判断x是否能再+1
t=Pow(x+1,k);
if(t!=-1 && t<=n)x++;
}
return x;
} */ ll multi(ll a,ll b)//快速乘
{
ll ans=;
while(b){
if(b&){
double judge=1.0*inf/ans;
if(a>judge) return -;
ans*=a;
}
b>>=;
if(a>INF&&b>) return -;
a=a*a;
}
return ans;
}
ll Find(ll x,ll k)//手动扩大pow精度
{
ll r=(ll)pow(x,1.0/k);
ll t,p;
p=multi(r,k);
if(p==x) return r;
if(p>x||p==-) r--;
else
{
t=multi(r+,k);
if(t!=-&&t<=x) r++;
}
return r;
}
ll solve(ll n){
if(n==)return ;
ll res=,Max=;
memset(sum,,sizeof sum);
sum[]=n;
for(ll k=;k<=;k++){
sum[k]=Find(n,k);//求扩精度后的最大的x
if(sum[k])sum[k]--;//1特判
if(sum[k]==){Max=k;break;}
}
//容斥
for(int j=Max;j>=;j--)
for(int i=;i<j;i++)
if(j%i==)sum[i]-=sum[j];
for(int i=;i<=Max;i++)res+=sum[i]*i;
return res;
} int main(){
ll L,R;
while(cin>>L>>R && R)
cout<<solve(R)-solve(L-)<<endl;
}

容斥原理——hdu3208的更多相关文章

  1. hdu4059 The Boss on Mars(差分+容斥原理)

    题意: 求小于n (1 ≤ n ≤ 10^8)的数中,与n互质的数的四次方和. 知识点: 差分: 一阶差分: 设  则    为一阶差分. 二阶差分: n阶差分:     且可推出    性质: 1. ...

  2. hdu2848 Visible Trees (容斥原理)

    题意: 给n*m个点(1 ≤ m, n ≤ 1e5),左下角的点为(1,1),右上角的点(n,m),一个人站在(0,0)看这些点.在一条直线上,只能看到最前面的一个点,后面的被档住看不到,求这个人能看 ...

  3. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  4. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

  5. ACM/ICPC 之 中国剩余定理+容斥原理(HDU5768)

    二进制枚举+容斥原理+中国剩余定理 #include<iostream> #include<cstring> #include<cstdio> #include&l ...

  6. HDU5838 Mountain(状压DP + 容斥原理)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5838 Description Zhu found a map which is a N∗M ...

  7. 【BZOJ-2669】局部极小值 状压DP + 容斥原理

    2669: [cqoi2012]局部极小值 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 561  Solved: 293[Submit][Status ...

  8. HDU 2204Eddy's爱好(容斥原理)

    Eddy's爱好 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Sta ...

  9. CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)

    Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...

随机推荐

  1. STM32F103

    memory map • Four masters: – Cortex® -M3 core DCode bus (D-bus) and System bus (S-bus)– GP-DMA1 & ...

  2. Redis基于主从复制的RCE(redis4.x 5.x)复现

    使用docker建立redis 拉取镜像 运行 查看 可以连接,存在未授权 https://github.com/Ridter/redis-rce 发送poc i:正向连接 r:反弹 反弹成功

  3. mysql的JDBC连接

    程序是通过DriverManager注册驱动,所以加载之后可以直接使用DriverMannagermysql中的多态: 不仅是赋值的时候使用了多态,返回的时候都是返回的借口(不是返回的子类对象),所以 ...

  4. !!!myeclipse 上加载本地图片问题,无法加载问题

    出现无法加载本地图片的问题, 原因就是把图片放到了本地项目中的image了,但是myeclipse上没有刷新 这样以后 本地的图片比在线的要快 低级错误,诶!

  5. 02ubuntu下python环境安装

    原文链接:https://blog.csdn.net/weixin_42549407/article/details/85198460 我安装的是python3.6.9 1.下载python的源码压缩 ...

  6. pytong下安装安装SK-Learn

    安装SK-Learn需要依赖的Python安装包有: Python (>= 2.6), NumPy (>= 1.3), SciPy (>= 0.7), 下载python的各种包的地址 ...

  7. Redis连不上的一些细节配置

    远程链接redis连不上,在确保防火墙设置正确的情况下 把redis.conf中的 bind 127.0.0.1注释 另外把protected-mode yes 改为protected-mode no

  8. Mysql优化-索引

    1. 索引的本质 MySQL官方对索引的定义为:索引是帮助MySQL高效获取数据的数据结构. 数据库查询是数据库的最主要功能之一.我们都希望查询数据的速度尽可能的快,因此 数据库系统的设计者会从查询算 ...

  9. Ubuntu下怎么退出vim编辑器

    vim其实就是vi的升级版,vi里的所有命令vim里都可以用,一般使用来说几乎没什么差别. 写在前面:进入vim编辑器之后无法退出并保存,可以尝试给要编辑的文件sudo权限(例如:sudo vim / ...

  10. JS 实现省市联动

    使用 JavaScript 实现选择省份,后面联动改变成相应省份下的市 原理很简单: 首先创建两个select下拉框(省.市) 初始化的时候让省都显示出来,市为空  ................. ...