(1) if divided by 2 or 3, then no;

(2) we only have to go through prime factors; because a composite can always be divided into primes.

(3) since 2 is the smallest prime, for number N, we only have to go through till N/2 max., because if one number is not a prime, the other factor must be no less than 2;

(4) consider N=n*m. If n<sqrt( N ), then it’s a must that m>sqrt( N ). So we only have to go through till sqrt( N )+1 max., because if there’s not a factor with in [2, sqrt(N)+1], there wouldn’t be one above;

(5) other than 2 and 3, prime numbers trend to have a format of (6n +/- 1), but not vise versa.

Now, I haven’t seen a strick mathematical prove on that theory, but someone has run a promgram certifying that at least the first 1 million prime numbers fit in that conclusion.

So if the number is not insanely big, it’s true.

That being say, if we divide a number by (6n +/- 1), it would include many non-prime dividers of course, but we are able to cover all prime factors, too.

Followed is one example:

		l = (int) Math.sqrt (n) + 1;
for (i=6; i<=l; i+=6) {
if (n % (i + 1) == 0) return false;
if (n % (i - 1) == 0) return false;
}
		// must be prime

(6) seive of Eratosthenes

https://zh.wikipedia.org/zh-hans/%E5%9F%83%E6%8B%89%E6%89%98%E6%96%AF%E7%89%B9%E5%B0%BC%E7%AD%9B%E6%B3%95

The running time for this algorithm is: O = nlog(logn).A pseudo code as followed:

Input: an integer n > 1

Let A be an array of Boolean values, indexed by integers 2 to n,
initially all set to true. for i = 2, 3, 4, ..., not exceeding √n:
if A[i] is true:
for j = i2, i2+i, i2+2i, i2+3i, ..., not exceeding n :
A[j] := false Output: all i such that A[i] is true.

Use seive of Eratosthenes would greatly improve the screening speed. Followed is one example:

	public static void main (String args[]) {
int i, j, l;
A = new boolean[N+1]; // do a sieve of Eratosthenes for (i=0; i<=N; i++) A[i] = true;
l = (int) Math.sqrt (N); // for each number i from 2 to square root of N... for (i=2; i<=l; i++) // ...mark off all the multiples of i for (j=i*i; j<=N; j+=i) A[j] = false; // count whatever is left; these are all the primes for (i=2,j=0; i<=N; i++) if (A[i]) j++;
System.out.println (j);
}
   
   
   
   

about how to determine a prime number的更多相关文章

  1. FZU 1649 Prime number or not米勒拉宾大素数判定方法。

    C - Prime number or not Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%I64d & % ...

  2. 每日一九度之 题目1040:Prime Number

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:6732 解决:2738 题目描述: Output the k-th prime number. 输入: k≤10000 输出: The k- ...

  3. LintCode-Kth Prime Number.

    Design an algorithm to find the kth number such that the only prime factors are 3, 5, and 7. The eli ...

  4. 10 001st prime number

    这真是一个耗CPU的运算,怪不得现在因式分解和素数查找现在都用于加密运算. By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13 ...

  5. [LeetCode] Prime Number of Set Bits in Binary Representation 二进制表示中的非零位个数为质数

    Given two integers L and R, find the count of numbers in the range [L, R] (inclusive) having a prime ...

  6. [Swift]LeetCode762. 二进制表示中质数个计算置位 | Prime Number of Set Bits in Binary Representation

    Given two integers L and R, find the count of numbers in the range [L, R] (inclusive) having a prime ...

  7. 10_ for 练习 _ is Prime Number ?

    <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...

  8. 762. Prime Number of Set Bits in Binary Representation二进制中有质数个1的数量

    [抄题]: Given two integers L and R, find the count of numbers in the range [L, R] (inclusive) having a ...

  9. LeetCode 762 Prime Number of Set Bits in Binary Representation 解题报告

    题目要求 Given two integers L and R, find the count of numbers in the range [L, R] (inclusive) having a ...

随机推荐

  1. Centos7.5安装分布式Hadoop2.6.0+Hbase+Hive(CDH5.14.2离线安装tar包)

    Tags: Hadoop Centos7.5安装分布式Hadoop2.6.0+Hbase+Hive(CDH5.14.2离线安装tar包) Centos7.5安装分布式Hadoop2.6.0+Hbase ...

  2. XDTIC2019招新笔试题 + 官方解答

    腾讯创新俱乐部2019年招新笔试试题   [1] 小宗学长正在努力学习数论,他写下了一个奇怪的算式: \[ 2019^{2018^{2017^{\dots^{2^1}}}} \] 算式的结果一定很大, ...

  3. Android Telephony分析(四) ---- TelephonyManager详解

    前言 TelephonyManager主要提供Telephony相关信息的查询/修改功能,以及Phone状态监听功能,封装的方法主要是提供给APP上层使用.TelephonyManager.java ...

  4. 批量调用百度地图API获取地址经纬度坐标

    1 申请密匙 注册百度地图API:http://lbsyun.baidu.com/index.php?title=webapi 点击左侧 “获取密匙” ,经过填写个人信息.邮箱注册等,成功之后在开放平 ...

  5. Flask-session用法

    概念 flask-session是flask框架的session组件,由于原来flask内置session使用签名cookie保存,该组件则将支持session保存到多个地方,如: * redis:保 ...

  6. Lunascape:将FireFox、Safari和IE合为一体的浏览器

    转自:http://blog.bingo929.com/lunascape-firefox-safari-ie-all-in-one.html 作为前端开发/网页设计师,电脑中总是安装着各种不同内核渲 ...

  7. JS按比例缩放图片

    1.JS代码 <script type="text/javascript" language="javascript"> var flag = fa ...

  8. ResultSetMetaData中getColumnLabel和getColumnName的区别

    利用jdbc连接数据库查询时,通常返回的结果就是每行数据的键值对集合.这时我们需要知道查询出来的数据有哪些字段.根据ResultSet结果集得到的ResultSetMetaData就可以获取到每个字段 ...

  9. Codeforces Round #563 (Div. 2) F. Ehab and the Big Finale

    后续: 点分治标程 使用father数组 比使用vis数组优秀(不需要对vis初始化) https://codeforces.com/problemset/problem/1174/F https:/ ...

  10. HTML 5 基础

    HTML 参考手册 HTML 5 视频 controls 属性供添加播放.暂停和音量控件. <video src="movie.ogg" width="320&qu ...