about how to determine a prime number
(1) if divided by 2 or 3, then no;
(2) we only have to go through prime factors; because a composite can always be divided into primes.
(3) since 2 is the smallest prime, for number N, we only have to go through till N/2 max., because if one number is not a prime, the other factor must be no less than 2;
(4) consider N=n*m. If n<sqrt( N ), then it’s a must that m>sqrt( N ). So we only have to go through till sqrt( N )+1 max., because if there’s not a factor with in [2, sqrt(N)+1], there wouldn’t be one above;
(5) other than 2 and 3, prime numbers trend to have a format of (6n +/- 1), but not vise versa.

Now, I haven’t seen a strick mathematical prove on that theory, but someone has run a promgram certifying that at least the first 1 million prime numbers fit in that conclusion.
So if the number is not insanely big, it’s true.
That being say, if we divide a number by (6n +/- 1), it would include many non-prime dividers of course, but we are able to cover all prime factors, too.
Followed is one example:
l = (int) Math.sqrt (n) + 1;
for (i=6; i<=l; i+=6) {
if (n % (i + 1) == 0) return false;
if (n % (i - 1) == 0) return false;
}
// must be prime
(6) seive of Eratosthenes
https://zh.wikipedia.org/zh-hans/%E5%9F%83%E6%8B%89%E6%89%98%E6%96%AF%E7%89%B9%E5%B0%BC%E7%AD%9B%E6%B3%95
The running time for this algorithm is: O = nlog(logn).A pseudo code as followed:
Input: an integer n > 1 Let A be an array of Boolean values, indexed by integers 2 to n,
initially all set to true. for i = 2, 3, 4, ..., not exceeding √n:
if A[i] is true:
for j = i2, i2+i, i2+2i, i2+3i, ..., not exceeding n :
A[j] := false Output: all i such that A[i] is true.
Use seive of Eratosthenes would greatly improve the screening speed. Followed is one example:
public static void main (String args[]) {
int i, j, l;
A = new boolean[N+1];
// do a sieve of Eratosthenes
for (i=0; i<=N; i++) A[i] = true;
l = (int) Math.sqrt (N);
// for each number i from 2 to square root of N...
for (i=2; i<=l; i++)
// ...mark off all the multiples of i
for (j=i*i; j<=N; j+=i) A[j] = false;
// count whatever is left; these are all the primes
for (i=2,j=0; i<=N; i++) if (A[i]) j++;
System.out.println (j);
}
about how to determine a prime number的更多相关文章
- FZU 1649 Prime number or not米勒拉宾大素数判定方法。
C - Prime number or not Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%I64d & % ...
- 每日一九度之 题目1040:Prime Number
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:6732 解决:2738 题目描述: Output the k-th prime number. 输入: k≤10000 输出: The k- ...
- LintCode-Kth Prime Number.
Design an algorithm to find the kth number such that the only prime factors are 3, 5, and 7. The eli ...
- 10 001st prime number
这真是一个耗CPU的运算,怪不得现在因式分解和素数查找现在都用于加密运算. By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13 ...
- [LeetCode] Prime Number of Set Bits in Binary Representation 二进制表示中的非零位个数为质数
Given two integers L and R, find the count of numbers in the range [L, R] (inclusive) having a prime ...
- [Swift]LeetCode762. 二进制表示中质数个计算置位 | Prime Number of Set Bits in Binary Representation
Given two integers L and R, find the count of numbers in the range [L, R] (inclusive) having a prime ...
- 10_ for 练习 _ is Prime Number ?
<!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...
- 762. Prime Number of Set Bits in Binary Representation二进制中有质数个1的数量
[抄题]: Given two integers L and R, find the count of numbers in the range [L, R] (inclusive) having a ...
- LeetCode 762 Prime Number of Set Bits in Binary Representation 解题报告
题目要求 Given two integers L and R, find the count of numbers in the range [L, R] (inclusive) having a ...
随机推荐
- Java 网络编程(1):使用 NetworkInterface 获得本机在局域网内的 IP 地址
原文地址:https://segmentfault.com/a/1190000007462741 1.问题提出 在使用 Java 开发网络程序时,有时候我们需要知道本机在局域网中的 IP 地址.很常见 ...
- Jsoup 学习笔记
这里写自定义目录标题 Jsoup 学习笔记 解析 HTML 的字符串解析 URL 解析 本地文件解析 解析数据 DOM 解析 使用选择器解析 选择器概述 选择器组合用法 过滤用法 修改数据 HTML ...
- Java 并发工具包——ExecutorService常用线程池
1. 执行器服务 ExecutorService java.util.concurrent.ExecutorService 接口表示一个异步执行机制,使我们能够在后台执行任务.因此一个 Executo ...
- Java异常类及处理
异常概述:运行时发生的不正常情况 在java中用类的形式对不正常的情况进行了描述和封装对象. 描述不正常的类,称之为异常类. 异常就是java通过面向对象的思想将问题封装成了对象,用异常类对其进行描述 ...
- 各版本IE兼容问题,IE6,IE7,IE8,IE9,IE10,IE11
在网站开发和学习中,由于各种兼容性问题,让开发者挺烦恼的,我的学员也经常因为兼容问题来找我取经. 事实上,IE给出了解决方案,谷歌给出了解决方案,国内著名网站百度也将这个解决方案应用于IE的兼容性问题 ...
- ie8以下不兼容h5新标签的解决方法
HTML5新添了一些语义化标签,他们能让代码语义化更直观易懂,有利于SEO优化.但是此HTML5新标签在IE6/IE7/IE8上并不能识别,需要进行JavaScript处理. 解决思路就是用js创建h ...
- iOS开发系列-HTTPS
HTTPS 网景在1994年创建了HTTPS,并应用在网景导航者浏览器中. 最初,HTTPS是与SSL一起使用的:在SSL逐渐演变到TLS. HTTPS协议与HTTP协议的一些不同: http是超文本 ...
- SVN 分支操作
一 拉取分支 1 选择浏览 2 输入svn项目路径:https://IP/svn/ 3 选择拉取的项目 4 下载到本地路劲 右键选中的分支—CheckOut 选择本地路劲 二 分支合并 1 分支合并 ...
- 双十一HostGator独立服务器方案
一年一度的“双十一”购物狂欢节到来,各大电商平台线上消费的各种“吸金”开启了“双十一”模式,一年一度的“双十一”网购狂欢又开始以“巨大的价格优势”来勾起消费者的购买欲望. 此次双十一期间,HostGa ...
- Git 如何使用ssh上传或者同步/下载项目到github
上传本地代码及更新代码到GitHub教程 上传本地代码 第一步:去github上创建自己的Repository,创建页面如下图所示: 红框为新建的仓库的https地址 第二步: echo " ...