这一节讲述roi-data层,和这一层有关的结构图如下:

roi-data层的prototxt定义如下:

layer {
name: 'roi-data'
type: 'Python'
bottom: 'rpn_rois'
bottom: 'gt_boxes'
top: 'rois'
top: 'labels'
top: 'bbox_targets'
top: 'bbox_inside_weights'
top: 'bbox_outside_weights'
python_param {
module: 'rpn.proposal_target_layer'
layer: 'ProposalTargetLayer'
param_str: "'num_classes': 2"
}
}

这一层接着上一节的proposal层,主要的操作是对RPN阶段输出的proposal做进一步的筛选,从中选出背景和前景,得到rois,然后计算rois的回归目标。因为第二阶段的rois回归是和类别一一对应的,第二阶段全连接网络预测出的回归目标值bbox_pred的shape为(num_rois, 4*num_classes),所以最后需要将计算出的rois的回归目标值放入与其类别相对应的位置。这一层的详细操作如下:

1、取gt的x1, y1, x2, y2列,再补个全是0的第一列(表示batch_inds),然后将前面proposal层得到的rpn_rois和这样一个新的矩阵在第一个维度上合并,得到all_rois;

2、用于训练的rois的BATCH_SIZE=128,其中前景rois占比为0.25,有32个,背景rois有96个,因此,需要从all_rois中采样;

3、在all_rois中,若某个rois和任意一个gt的overlap大于或等于0.5,则该rois为前景,其类别为与之overlap最大的那个gt的类别。若某个rois和所有gt的overlap的最大值大于或等于0.1,并且小于0.5,则该rois为背景。这样便筛选出了前景和背景rois,每个rois都和一个gt对应(和它overlap最大的那个gt);

4、计算每个rois相对于它的gt的偏移量(回归目标targets),这个过程和rpn-data层中计算RPN阶段的回归目标一样。然后还需要将targets减去事先设定的均值,除以事先设定的标准差,最后将rois的类别添加在targets的第一列,得到bbox_target_data;

5、将rois的回归目标值放入与rois的类别相对应的位置,得到bbox_targets,并将bbox_inside_weights对应位置的4个值赋为1,而bbox_targets, bbox_inside_weights其他位置的值都为0,bbox_outside_weights在bbox_inside_weights大于0的位置值为1,其他位置值为0。

总结一下,这一层的输出有rois, labels, bbox_targets, bbox_inside_weights, bbox_outside_weights。第二阶段全连接网络的输出bbox_pred将和其中的bbox_targets, bbox_inside_weights, bbox_outside_weights作为第二阶段loss_bbox的输入。roi-data层的代码链接见这里

faster-rcnn代码阅读-roi-data层的更多相关文章

  1. Faster RCNN代码理解(Python)

    转自http://www.infocool.net/kb/Python/201611/209696.html#原文地址 第一步,准备 从train_faster_rcnn_alt_opt.py入: 初 ...

  2. Faster rcnn代码理解(4)

    上一篇我们说完了AnchorTargetLayer层,然后我将Faster rcnn中的其他层看了,这里把ROIPoolingLayer层说一下: 我先说一下它的实现原理:RPN生成的roi区域大小是 ...

  3. Faster rcnn代码理解(2)

    接着上篇的博客,咱们继续看一下Faster RCNN的代码- 上次大致讲完了Faster rcnn在训练时是如何获取imdb和roidb文件的,主要都在train_rpn()的get_roidb()函 ...

  4. Faster rcnn代码理解(1)

    这段时间看了不少论文,回头看看,感觉还是有必要将Faster rcnn的源码理解一下,毕竟后来很多方法都和它有相近之处,同时理解该框架也有助于以后自己修改和编写自己的框架.好的开始吧- 这里我们跟着F ...

  5. Faster RCNN代码解析

    1.faster_rcnn_end2end训练 1.1训练入口及配置 def train(): cfg.GPU_ID = 0 cfg_file = "../experiments/cfgs/ ...

  6. Faster R-CNN论文阅读摘要

    论文链接: https://arxiv.org/pdf/1506.01497.pdf 代码下载: https://github.com/ShaoqingRen/faster_rcnn (MATLAB) ...

  7. Faster R-CNN代码例子

    主要参考文章:1,从编程实现角度学习Faster R-CNN(附极简实现) 经常是做到一半发现收敛情况不理想,然后又回去看看这篇文章的细节. 另外两篇: 2,Faster R-CNN学习总结      ...

  8. Faster rcnn代码理解(3)

    紧接着之前的博客,我们继续来看faster rcnn中的AnchorTargetLayer层: 该层定义在lib>rpn>中,见该层定义: 首先说一下这一层的目的是输出在特征图上所有点的a ...

  9. tensorflow faster rcnn 代码分析一 demo.py

    os.environ["CUDA_VISIBLE_DEVICES"]=2 # 设置使用的GPU tfconfig=tf.ConfigProto(allow_soft_placeme ...

  10. 对faster rcnn代码讲解的很好的一个

    http://www.cnblogs.com/houkai/p/6824455.html http://blog.csdn.net/u014696921/article/details/6032142 ...

随机推荐

  1. 阿里云文件存储(NAS)助力业务系统承载双十一尖峰流量

    2018天猫双11全球狂欢节,全天成交额再次刷新纪录达到2135亿元,其中总成交额在开场后仅仅用了2分05秒即突破100亿元,峰值的交易量达到惊人的高度,背后离不开阿里云大数据计算和存储能力的支撑.在 ...

  2. thinkphp rpc

    RPC(Remote Procedure Call Protocol)——远程过程调用协议,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议.RPC协议假定某些传输协议的存在 ...

  3. 谈html mailto(电子邮件)实际应用

    大家知道,mailto是网页设计制作中的一个非常实用的html标签,许多拥有个人网页的朋友都喜欢在网站的醒目位置处写上自己的电子邮件地址,当点击时就能自动打开当前计算机系统中默认的电子邮件客户端软件, ...

  4. 2019 wannafly winter camp day5-8代码库

    目录 day5 5H div2 Nested Tree (树形dp) 5F div2 Kropki (状压dp) 5J div1 Special Judge (计算几何) 5I div1 Sortin ...

  5. js分割url提取参数

    //分割url提取参数 var url = Window.location.search;//获取url地址?至结尾的所有参数 //key(需要检错的键) url(传入的需要分割的url地址) fun ...

  6. (7)centos7 用户管理

    1.创建用户 useradd meng 如果创建用户时没有指定属于哪个组,则默认会创建一个名字与用户相同的组并归属于此组 对应的home目录下回创建一个meng的文件夹 2.设置密码 passwd m ...

  7. k8s 资源管理

    对应到Kubernetes的Pod容器上,就是下面这4个参数:◎ spec.container[].resources.requests.cpu:◎ spec.container[].resource ...

  8. 获取hdfs集群信息(fs.defaultFS)

    [root@hive-dp-7bd6fd4d55-wctjn hive-1.1.0-cdh5.14.0]# hdfs getconf -confKey fs.default.name19/12/04 ...

  9. 剑指offer——68队列的最大值

    题目描述 给定一个数组和滑动窗口的大小,找出所有滑动窗口里数值的最大值.例如,如果输入数组{2,3,4,2,6,2,5,1}及滑动窗口的大小3,那么一共存在6个滑动窗口,他们的最大值分别为{4,4,6 ...

  10. xshell6 远程连接时提示 WARNING! The remote SSH server rejected X11 forwarding request.

    1.输入命令 vi /etc/ssh/sshd_config ,修改配置文件 2.将UserLogin no 的注释解除   3.执行yum install -y xorg-x11-font xorg ...