这一节讲述roi-data层,和这一层有关的结构图如下:

roi-data层的prototxt定义如下:

layer {
name: 'roi-data'
type: 'Python'
bottom: 'rpn_rois'
bottom: 'gt_boxes'
top: 'rois'
top: 'labels'
top: 'bbox_targets'
top: 'bbox_inside_weights'
top: 'bbox_outside_weights'
python_param {
module: 'rpn.proposal_target_layer'
layer: 'ProposalTargetLayer'
param_str: "'num_classes': 2"
}
}

这一层接着上一节的proposal层,主要的操作是对RPN阶段输出的proposal做进一步的筛选,从中选出背景和前景,得到rois,然后计算rois的回归目标。因为第二阶段的rois回归是和类别一一对应的,第二阶段全连接网络预测出的回归目标值bbox_pred的shape为(num_rois, 4*num_classes),所以最后需要将计算出的rois的回归目标值放入与其类别相对应的位置。这一层的详细操作如下:

1、取gt的x1, y1, x2, y2列,再补个全是0的第一列(表示batch_inds),然后将前面proposal层得到的rpn_rois和这样一个新的矩阵在第一个维度上合并,得到all_rois;

2、用于训练的rois的BATCH_SIZE=128,其中前景rois占比为0.25,有32个,背景rois有96个,因此,需要从all_rois中采样;

3、在all_rois中,若某个rois和任意一个gt的overlap大于或等于0.5,则该rois为前景,其类别为与之overlap最大的那个gt的类别。若某个rois和所有gt的overlap的最大值大于或等于0.1,并且小于0.5,则该rois为背景。这样便筛选出了前景和背景rois,每个rois都和一个gt对应(和它overlap最大的那个gt);

4、计算每个rois相对于它的gt的偏移量(回归目标targets),这个过程和rpn-data层中计算RPN阶段的回归目标一样。然后还需要将targets减去事先设定的均值,除以事先设定的标准差,最后将rois的类别添加在targets的第一列,得到bbox_target_data;

5、将rois的回归目标值放入与rois的类别相对应的位置,得到bbox_targets,并将bbox_inside_weights对应位置的4个值赋为1,而bbox_targets, bbox_inside_weights其他位置的值都为0,bbox_outside_weights在bbox_inside_weights大于0的位置值为1,其他位置值为0。

总结一下,这一层的输出有rois, labels, bbox_targets, bbox_inside_weights, bbox_outside_weights。第二阶段全连接网络的输出bbox_pred将和其中的bbox_targets, bbox_inside_weights, bbox_outside_weights作为第二阶段loss_bbox的输入。roi-data层的代码链接见这里

faster-rcnn代码阅读-roi-data层的更多相关文章

  1. Faster RCNN代码理解(Python)

    转自http://www.infocool.net/kb/Python/201611/209696.html#原文地址 第一步,准备 从train_faster_rcnn_alt_opt.py入: 初 ...

  2. Faster rcnn代码理解(4)

    上一篇我们说完了AnchorTargetLayer层,然后我将Faster rcnn中的其他层看了,这里把ROIPoolingLayer层说一下: 我先说一下它的实现原理:RPN生成的roi区域大小是 ...

  3. Faster rcnn代码理解(2)

    接着上篇的博客,咱们继续看一下Faster RCNN的代码- 上次大致讲完了Faster rcnn在训练时是如何获取imdb和roidb文件的,主要都在train_rpn()的get_roidb()函 ...

  4. Faster rcnn代码理解(1)

    这段时间看了不少论文,回头看看,感觉还是有必要将Faster rcnn的源码理解一下,毕竟后来很多方法都和它有相近之处,同时理解该框架也有助于以后自己修改和编写自己的框架.好的开始吧- 这里我们跟着F ...

  5. Faster RCNN代码解析

    1.faster_rcnn_end2end训练 1.1训练入口及配置 def train(): cfg.GPU_ID = 0 cfg_file = "../experiments/cfgs/ ...

  6. Faster R-CNN论文阅读摘要

    论文链接: https://arxiv.org/pdf/1506.01497.pdf 代码下载: https://github.com/ShaoqingRen/faster_rcnn (MATLAB) ...

  7. Faster R-CNN代码例子

    主要参考文章:1,从编程实现角度学习Faster R-CNN(附极简实现) 经常是做到一半发现收敛情况不理想,然后又回去看看这篇文章的细节. 另外两篇: 2,Faster R-CNN学习总结      ...

  8. Faster rcnn代码理解(3)

    紧接着之前的博客,我们继续来看faster rcnn中的AnchorTargetLayer层: 该层定义在lib>rpn>中,见该层定义: 首先说一下这一层的目的是输出在特征图上所有点的a ...

  9. tensorflow faster rcnn 代码分析一 demo.py

    os.environ["CUDA_VISIBLE_DEVICES"]=2 # 设置使用的GPU tfconfig=tf.ConfigProto(allow_soft_placeme ...

  10. 对faster rcnn代码讲解的很好的一个

    http://www.cnblogs.com/houkai/p/6824455.html http://blog.csdn.net/u014696921/article/details/6032142 ...

随机推荐

  1. springCloud数据

    DROP DATABASE IF EXISTS springcloud_db01;CREATE DATABASE springcloud_db01 CHARACTER SET utf8;USE spr ...

  2. 【IP】虚拟IP原理

    使用场景: 当这台机器出现故障时,自动动态切换到另一台热备的机器 高可用性HA(High Availability) 指的是通过尽量缩短因日常维护操作(计划)和突发的系统崩溃(非计划)所导致的停机时间 ...

  3. CF 1082E Increasing Frequency(贪心)

    传送门 解题思路 贪心.对于一段区间中,可以将这段区间中相同的元素同时变成\(c\),但要付出的代价是区间中等于\(c\)的数的个数,设\(sum[i]\)表示等于\(c\)数字的前缀和,Max[i] ...

  4. css样式总结体会

    css属性值语法:https://developer.mozilla.org/zh-CN/docs/Web/CSS/Value_definition_syntax 1.margin-top属性不起作用 ...

  5. js设计模式——4.迭代器模式

    js设计模式——4.迭代器模式 代码演示 /*js设计模式——迭代器模式*/ class Iterator { constructor(container) { this.list = contain ...

  6. error LNK2019: 无法解析的外部符号 "__declspec(dllimport) long __stdcall RtlGetVersion(struct _OSVERSIONINFOW

    虽然ntdll.lib库也引用了,但还是提示找不到RtlGetVersion函数定义,工程中头文件的定义如下: NTSYSAPI NTSTATUS NTAPI RtlGetVersion(     _ ...

  7. CSS:CSS 伪类(Pseudo-classes)

    ylbtech-CSS:CSS 伪类(Pseudo-classes) 1.返回顶部 1. CSS 伪类(Pseudo-classes) CSS伪类是用来添加一些选择器的特殊效果. 语法 伪类的语法: ...

  8. 一道腾讯面试题:如何快速判断某 URL 是否在 20 亿的网址 URL 集合中?布隆过滤器

    何为布隆过滤器 还是以上面的例子为例: 判断逻辑: 多次哈希: Guava的BloomFilter 创建BloomFilter 最终还是调用: 使用: 算法特点 使用场景 假设遇到这样一个问题:一个网 ...

  9. linux进阶之路(一):linux入门

    Linux:开源.免费得开源系统.具有高效性.稳定性.安全性.处理多并发. Linux的发行版本:基于Linux,不同的安装软件 CentOS(RedHat开源版本) RedHat Ubuntu Su ...

  10. PAT_A1070#Mooncake

    Source: PAT A1070 Mooncake (25 分) Description: Mooncake is a Chinese bakery product traditionally ea ...