Comparison of FastText and Word2Vec

 

Facebook Research open sourced a great project yesterday - fastText, a fast (no surprise) and effective method to learn word representations and perform text classification. I was curious about comparing these embeddings to other commonly used embeddings, so word2vec seemed like the obvious choice, especially considering fastText embeddings are based upon word2vec.

 

Download data

In [ ]:
import nltk
nltk.download()
# Only the brown corpus is needed in case you don't have it.
# alternately, you can simply download the pretrained models below if you wish to avoid downloading and training # Generate brown corpus text file
with open('brown_corp.txt', 'w+') as f:
for word in nltk.corpus.brown.words():
f.write('{word} '.format(word=word))
In [ ]:
# download the text8 corpus (a 100 MB sample of cleaned wikipedia text)
# alternately, you can simply download the pretrained models below if you wish to avoid downloading and training
!wget http://mattmahoney.net/dc/text8.zip
In [ ]:
# download the file questions-words.txt to be used for comparing word embeddings
!wget https://raw.githubusercontent.com/arfon/word2vec/master/questions-words.txt
 

Train models

 

If you wish to avoid training, you can download pre-trained models instead in the next section. For training the fastText models yourself, you'll have to follow the setup instructions for fastText and run the training with -

In [ ]:
!./fasttext skipgram -input brown_corp.txt -output brown_ft
!./fasttext skipgram -input text8.txt -output text8_ft
 

For training the gensim models -

In [ ]:
from nltk.corpus import brown
from gensim.models import Word2Vec
from gensim.models.word2vec import Text8Corpus
import logging logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s')
logging.root.setLevel(level=logging.INFO) MODELS_DIR = 'models/' brown_gs = Word2Vec(brown.sents())
brown_gs.save_word2vec_format(MODELS_DIR + 'brown_gs.vec') text8_gs = Word2Vec(Text8Corpus('text8'))
text8_gs.save_word2vec_format(MODELS_DIR + 'text8_gs.vec')
 

Download models

In case you wish to avoid downloading the corpus and training the models, you can download pretrained models with -

In [ ]:
# download the fastText and gensim models trained on the brown corpus and text8 corpus
!wget https://www.dropbox.com/s/4kray3epy439gca/models.tar.gz?dl=1 -O models.tar.gz
 

Once you have downloaded or trained the models (make sure they're in the models/ directory, or that you've appropriately changed MODELS_DIR) and downloaded questions-words.txt, you're ready to run the comparison.

 

Comparisons

In [1]:
from gensim.models import Word2Vec

def print_accuracy(model, questions_file):
print('Evaluating...\n')
acc = model.accuracy(questions_file)
for section in acc:
correct = len(section['correct'])
total = len(section['correct']) + len(section['incorrect'])
total = total if total else 1
accuracy = 100*float(correct)/total
print('{:d}/{:d}, {:.2f}%, Section: {:s}'.format(correct, total, accuracy, section['section']))
sem_correct = sum((len(acc[i]['correct']) for i in range(5)))
sem_total = sum((len(acc[i]['correct']) + len(acc[i]['incorrect'])) for i in range(5))
print('\nSemantic: {:d}/{:d}, Accuracy: {:.2f}%'.format(sem_correct, sem_total, 100*float(sem_correct)/sem_total)) syn_correct = sum((len(acc[i]['correct']) for i in range(5, len(acc)-1)))
syn_total = sum((len(acc[i]['correct']) + len(acc[i]['incorrect'])) for i in range(5,len(acc)-1))
print('Syntactic: {:d}/{:d}, Accuracy: {:.2f}%\n'.format(syn_correct, syn_total, 100*float(syn_correct)/syn_total)) MODELS_DIR = 'models/' word_analogies_file = 'questions-words.txt'
print('\nLoading FastText embeddings')
ft_model = Word2Vec.load_word2vec_format(MODELS_DIR + 'brown_ft.vec')
print('Accuracy for FastText:')
print_accuracy(ft_model, word_analogies_file) print('\nLoading Gensim embeddings')
gs_model = Word2Vec.load_word2vec_format(MODELS_DIR + 'brown_gs.vec')
print('Accuracy for word2vec:')
print_accuracy(gs_model, word_analogies_file)
 
Loading FastText embeddings
Accuracy for FastText:
Evaluating... 0/1, 0.00%, Section: capital-common-countries
0/1, 0.00%, Section: capital-world
0/1, 0.00%, Section: currency
0/1, 0.00%, Section: city-in-state
27/182, 14.84%, Section: family
539/702, 76.78%, Section: gram1-adjective-to-adverb
106/132, 80.30%, Section: gram2-opposite
656/1056, 62.12%, Section: gram3-comparative
136/210, 64.76%, Section: gram4-superlative
439/650, 67.54%, Section: gram5-present-participle
0/1, 0.00%, Section: gram6-nationality-adjective
165/1260, 13.10%, Section: gram7-past-tense
327/552, 59.24%, Section: gram8-plural
245/342, 71.64%, Section: gram9-plural-verbs
2640/5086, 51.91%, Section: total Semantic: 27/182, Accuracy: 14.84%
Syntactic: 2613/4904, Accuracy: 53.28% Loading Gensim embeddings
Accuracy for word2vec:
Evaluating... 0/1, 0.00%, Section: capital-common-countries
0/1, 0.00%, Section: capital-world
0/1, 0.00%, Section: currency
0/1, 0.00%, Section: city-in-state
53/182, 29.12%, Section: family
8/702, 1.14%, Section: gram1-adjective-to-adverb
0/132, 0.00%, Section: gram2-opposite
75/1056, 7.10%, Section: gram3-comparative
0/210, 0.00%, Section: gram4-superlative
16/650, 2.46%, Section: gram5-present-participle
0/1, 0.00%, Section: gram6-nationality-adjective
30/1260, 2.38%, Section: gram7-past-tense
4/552, 0.72%, Section: gram8-plural
8/342, 2.34%, Section: gram9-plural-verbs
194/5086, 3.81%, Section: total Semantic: 53/182, Accuracy: 29.12%
Syntactic: 141/4904, Accuracy: 2.88%
 

Word2vec embeddings seem to be slightly better than fastText embeddings at the semantic tasks, while the fastText embeddings do significantly better on the syntactic analogies. Makes sense, since fastText embeddings are trained for understanding morphological nuances, and most of the syntactic analogies are morphology based.

Let me explain that better.

According to the paper [1], embeddings for words are represented by the sum of their n-gram embeddings. This is meant to be useful for morphologically rich languages - so theoretically, the embedding for apparently would include information from both character n-grams apparent and ly (as well as other n-grams), and the n-grams would combine in a simple, linear manner. This is very similar to what most of our syntactic tasks look like.

Example analogy:

amazing amazingly calm calmly

This analogy is marked correct if:

embedding(amazing) - embedding(amazingly) = embedding(calm) - embedding(calmly)

Both these subtractions would result in a very similar set of remaining ngrams. No surprise the fastText embeddings do extremely well on this.

A brief note on hyperparameters - the Gensim word2vec implementation and the fastText word embedding implementation use largely the same defaults (dim_size = 100, window_size = 5, num_epochs = 5). Of course, they are two completely different models (albeit, with a few similarities).

Let's try with a larger corpus now - text8 (collection of wiki articles). I'm especially curious about the impact on semantic accuracy - for models trained on the brown corpus, the difference in the semantic accuracy and the accuracy values themselves are too small to be conclusive. Hopefully a larger corpus helps, and the text8 corpus likely has a lot more information about capitals, currencies, cities etc, which should be relevant to the semantic tasks.

In [2]:
print('Loading FastText embeddings')
ft_model = Word2Vec.load_word2vec_format(MODELS_DIR + 'text8_ft.vec')
print('Accuracy for FastText:')
print_accuracy(ft_model, word_analogies_file) print('Loading Gensim embeddings')
gs_model = Word2Vec.load_word2vec_format(MODELS_DIR + 'text8_gs.vec')
print('Accuracy for word2vec:')
print_accuracy(gs_model, word_analogies_file)
 
Loading FastText embeddings
Accuracy for FastText:
Evaluating... 298/506, 58.89%, Section: capital-common-countries
625/1452, 43.04%, Section: capital-world
37/268, 13.81%, Section: currency
291/1511, 19.26%, Section: city-in-state
151/306, 49.35%, Section: family
567/756, 75.00%, Section: gram1-adjective-to-adverb
188/306, 61.44%, Section: gram2-opposite
809/1260, 64.21%, Section: gram3-comparative
303/506, 59.88%, Section: gram4-superlative
528/992, 53.23%, Section: gram5-present-participle
1291/1371, 94.16%, Section: gram6-nationality-adjective
451/1332, 33.86%, Section: gram7-past-tense
853/992, 85.99%, Section: gram8-plural
360/650, 55.38%, Section: gram9-plural-verbs
6752/12208, 55.31%, Section: total Semantic: 1402/4043, Accuracy: 34.68%
Syntactic: 5350/8165, Accuracy: 65.52% Loading Gensim embeddings
Accuracy for word2vec:
Evaluating... 138/506, 27.27%, Section: capital-common-countries
248/1452, 17.08%, Section: capital-world
28/268, 10.45%, Section: currency
158/1571, 10.06%, Section: city-in-state
227/306, 74.18%, Section: family
85/756, 11.24%, Section: gram1-adjective-to-adverb
54/306, 17.65%, Section: gram2-opposite
739/1260, 58.65%, Section: gram3-comparative
178/506, 35.18%, Section: gram4-superlative
297/992, 29.94%, Section: gram5-present-participle
718/1371, 52.37%, Section: gram6-nationality-adjective
325/1332, 24.40%, Section: gram7-past-tense
389/992, 39.21%, Section: gram8-plural
200/650, 30.77%, Section: gram9-plural-verbs
3784/12268, 30.84%, Section: total Semantic: 799/4103, Accuracy: 19.47%
Syntactic: 2985/8165, Accuracy: 36.56%
 

With the text8 corpus, the semantic accuracy for the fastText model increases significantly, and it surpasses word2vec on accuracies for both semantic and syntactical analogies. However, the increase in syntactic accuracy from the increase in corpus size is much higher for word2vec

These preliminary results seem to indicate fastText embeddings might be better than word2vec at encoding semantic and especially syntactic information. It'd be interesting to see how transferable these embeddings are by comparing their performance in a downstream supervised task.

 

References

Comparison of FastText and Word2Vec的更多相关文章

  1. fastText训练word2vec并用于训练任务

    最近测试OpenNRE,没有GPU服务器,bert的跑不动,于是考虑用word2vec,捡起fasttext 下载安装 先clone代码 git clone https://github.com/fa ...

  2. 超快的 FastText

    Word2Vec 作者.脸书科学家 Mikolov 文本分类新作 fastText:方法简单,号称并不需要深度学习那样几小时或者几天的训练时间,在普通 CPU 上最快几十秒就可以训练模型,得到不错的结 ...

  3. DL4NLP——词表示模型(二)基于神经网络的模型:NPLM;word2vec(CBOW/Skip-gram)

    本文简述了以下内容: 神经概率语言模型NPLM,训练语言模型并同时得到词表示 word2vec:CBOW / Skip-gram,直接以得到词表示为目标的模型 (一)原始CBOW(Continuous ...

  4. NLP︱高级词向量表达(二)——FastText(简述、学习笔记)

    FastText是Facebook开发的一款快速文本分类器,提供简单而高效的文本分类和表征学习的方法,不过这个项目其实是有两部分组成的,一部分是这篇文章介绍的 fastText 文本分类(paper: ...

  5. 检索式chatbot:

    小夕从7月份开始收到第一场面试邀请,到9月初基本结束了校招(面够了面够了T_T),深深的意识到今年的对话系统/chatbot方向是真的超级火呀.从微软主打情感计算的小冰,到百度主打智能家庭(与车联网? ...

  6. NLP获取词向量的方法(Glove、n-gram、word2vec、fastText、ELMo 对比分析)

    自然语言处理的第一步就是获取词向量,获取词向量的方法总体可以分为两种两种,一个是基于统计方法的,一种是基于语言模型的. 1 Glove - 基于统计方法 Glove是一个典型的基于统计的获取词向量的方 ...

  7. 模型介绍之FastText

    模型介绍一: 1. FastText原理及实践 前言----来源&特点 fastText是Facebook于2016年开源的一个词向量计算和文本分类工具,在学术上并没有太大创新.但是它的优点也 ...

  8. 文本分类需要CNN?No!fastText完美解决你的需求(后篇)

    http://blog.csdn.net/weixin_36604953/article/details/78324834 想必通过前一篇的介绍,各位小主已经对word2vec以及CBOW和Skip- ...

  9. FastText算法原理解析

    1. 前言 自然语言处理(NLP)是机器学习,人工智能中的一个重要领域.文本表达是 NLP中的基础技术,文本分类则是 NLP 的重要应用.fasttext是facebook开源的一个词向量与文本分类工 ...

随机推荐

  1. Java Number&Math类

    Java Number类 一般地,当需要使用数字的时候,我们通常使用内置数据类型,如:byte.int.long.double等. 实例 int i = 5000; float gpa = 13.65 ...

  2. 编码格式分类: 前后端传递数据的编码格式contentType

    urlencoded:form表单和ajax提交数据的默认编码格式 form-data:传文件 application/json:json格式数据 >>> 前后端分离 urlenco ...

  3. Yii2中GridView

    Yii2 GridView与dropdownList结合的用法 http://www.yiichina.com/tutorial/473 <?=$form->field($model, ' ...

  4. Android中对应用程序的行为拦截实现方式概要

    这次是真的好长时间都没有写博客了,主要不是因为工作上的事,主要还是这个问题真的有点复杂,实现起来有点麻烦,所以研究了很长时间(大约有一个月的时间).但是幸好最后问题搞定了~~ 一.问题场景 想实现36 ...

  5. SP7258 SUBLEX - Lexicographical Substring Search(后缀自动机)

    传送门 解题思路 首先建\(sam\),然后在拓扑序上\(dp\)一下,把每个点的路径数算出来,然后统计答案时就在自动机上\(dfs\)一下,仿照平衡树那样找第\(k\)小. 代码 #include& ...

  6. fatal error C1076: compiler limit : internal heap limit reached; use /Zm to specify a higher limit

    最近想用一下Xtreme ToolkitPro 界面库,安装后用VC6根据向导 产生一个工程,编译时出现如下的错误: fatal error C1076: compiler limit : inter ...

  7. CSS:CSS 尺寸 (Dimension)

    ylbtech-CSS:CSS 尺寸 (Dimension) 1.返回顶部 1. CSS 尺寸 (Dimension) CSS 尺寸 (Dimension) 属性允许你控制元素的高度和宽度.同样,它允 ...

  8. Dubbo入门到精通学习笔记(三):持续集成管理平台之SVN版本管理系统的安装和使用

    文章目录 持续集成管理平台介绍 持续集成介绍 持续集成管理平台的组成 持续集成实践介绍 即将学习 SVN版本管理系统的安装 安装 Subversion + Apache 安装 jsvnadmin 简单 ...

  9. js读取json数据

    { "code": 0, "msg": null, "data": { "pageNum": 1, "page ...

  10. 68.最大k乘积问题 (15分)

    C时间限制:3000 毫秒 |  C内存限制:3000 Kb题目内容:设I是一个n位十进制整数.如果将I划分为k段,则可得到k个整数.这k个整数的乘积称为I的一个k乘积.试设计一个算法,对于给定的I和 ...