Fix a Tree
Fix a Tree
A tree is an undirected connected graph without cycles.
Let's consider a rooted undirected tree with n vertices, numbered 1 through n. There are many ways to represent such a tree. One way is to create an array with n integers p1, p2, ..., pn, where pi denotes a parent of vertex i (here, for convenience a root is considered its own parent).
For this rooted tree the array p is [2, 3, 3, 2].
Given a sequence p1, p2, ..., pn, one is able to restore a tree:
- There must be exactly one index r that pr = r. A vertex r is a root of the tree.
- For all other n - 1 vertices i, there is an edge between vertex i and vertex pi.
A sequence p1, p2, ..., pn is called valid if the described procedure generates some (any) rooted tree. For example, for n = 3 sequences (1,2,2), (2,3,1) and (2,1,3) are not valid.
You are given a sequence a1, a2, ..., an, not necessarily valid. Your task is to change the minimum number of elements, in order to get a valid sequence. Print the minimum number of changes and an example of a valid sequence after that number of changes. If there are many valid sequences achievable in the minimum number of changes, print any of them.
The first line of the input contains an integer n (2 ≤ n ≤ 200 000) — the number of vertices in the tree.
The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n).
In the first line print the minimum number of elements to change, in order to get a valid sequence.
In the second line, print any valid sequence possible to get from (a1, a2, ..., an) in the minimum number of changes. If there are many such sequences, any of them will be accepted.
4
2 3 3 4
1
2 3 4 4
5
3 2 2 5 3
0
3 2 2 5 3
8
2 3 5 4 1 6 6 7
2
2 3 7 8 1 6 6 7
In the first sample, it's enough to change one element. In the provided output, a sequence represents a tree rooted in a vertex 4 (because p4 = 4), which you can see on the left drawing below. One of other correct solutions would be a sequence 2 3 3 2, representing a tree rooted in vertex 3 (right drawing below). On both drawings, roots are painted red.
In the second sample, the given sequence is already valid.
分析:dfs循环一遍,遇到环时该点是可能修改的答案。注意,如果树已有根的话就用任意一个根,否则在断点处建一个根;
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#include <ext/rope>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)
#define vi vector<int>
#define pii pair<int,int>
#define mod 1000000007
#define inf 0x3f3f3f3f
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
const int maxn=2e5+;
const int dis[][]={{,},{-,},{,-},{,}};
using namespace std;
using namespace __gnu_cxx;
ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=;while(q){if(q&)f=f*p;p=p*p;q>>=;}return f;}
int n,m,a[maxn],vis[maxn],cnt,ans;
bool flag;
set<int>p;
void dfs(int now)
{
vis[now]=cnt;
if(vis[a[now]]==cnt)
{
p.insert(now);return;
}
else if(vis[a[now]])return;
else dfs(a[now]);
}
int main()
{
int i,j,k,t;
scanf("%d",&n);
rep(i,,n){
scanf("%d",&a[i]);
if(a[i]==i)
ans=i,flag=true;
}
rep(i,,n)
if(!vis[i])++cnt,dfs(i);
if(flag==false)
printf("%d\n",p.size()),ans=*p.begin();
else
printf("%d\n",p.size()-);
rep(i,,n)
{
if(p.find(i)!=p.end())a[i]=ans;
}
rep(i,,n)
printf("%d ",a[i]);
//system ("pause");
return ;
}
Fix a Tree的更多相关文章
- Codeforces Round #363 (Div. 2) 698B Fix a Tree
D. Fix a Tree time limit per test 2 seconds memory limit per test 256 megabytes A tree is an und ...
- Codeforces Round #363 (Div. 2)D. Fix a Tree(并查集)
D. Fix a Tree time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...
- Problem - D - Codeforces Fix a Tree
Problem - D - Codeforces Fix a Tree 看完第一名的代码,顿然醒悟... 我可以把所有单独的点全部当成线,那么只有线和环. 如果全是线的话,直接线的条数-1,便是操作 ...
- Codeforces Round #363 (Div. 2) D. Fix a Tree —— 并查集
题目链接:http://codeforces.com/contest/699/problem/D D. Fix a Tree time limit per test 2 seconds memory ...
- Codeforces Fix a Tree
Fix a Tree time limit per test2 seconds A tree is an undirected connected graph without cycles. Let' ...
- 【27.48%】【codeforces 699D】 Fix a Tree
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
- Codeforces 699D Fix a Tree 并查集
原题:http://codeforces.com/contest/699/problem/D 题目中所描述的从属关系,可以看作是一个一个块,可以用并查集来维护这个森林.这些从属关系中会有两种环,第一种 ...
- 【CodeForces 699D】Fix a Tree
dfs找出联通块个数cnt,当形成环时,令指向已访问过节点的节点变成指向-1,即做一个标记.把它作为该联通图的根. 把所有联通的图变成一颗树,如果存在指向自己的点,那么它所在的联通块就是一个树(n-1 ...
- Codeforces Round #363 Fix a Tree(树 拓扑排序)
先做拓扑排序,再bfs处理 #include<cstdio> #include<iostream> #include<cstdlib> #include<cs ...
随机推荐
- 安装Eclipse环境
1.下载安装JDK,并设置环境变量 2.下载Eclipse,官网下载地址:http://www.eclipse.org/downloads/ 选择相应版本,我选的是Windows 64bit 3.下载 ...
- python2.7学习记录之三
1.连接数据库 MySQLdb的是一个接口连接到MySQL数据库服务器从Python.它实现了Python数据库API V2.0,并建上的MySQL C API的顶端. 下载地址:https://so ...
- Load PE from memory(反取证)(未完)
Article 1:Loading Win32/64 DLLs "manually" without LoadLibrary() The most important step ...
- 菜鸟认识揭开DLL木马
相信经常玩木马的朋友们都会知道一些木马的特性,也会有自己最喜爱的木马,不过,很多朋友依然不知道近年兴起的“DLL木马”为何物.什么是“DLL木马”呢?它与一般的木马有什么不同? 一.从DLL技术说起 ...
- 浅谈h5移动端页面的适配问题
一.前言 昨天唠叨了哈没用的,今天说点有用的把.先说一下响应式布局吧,我一直认为响应式布局的分项目,一下布局简单得项目做响应式还是可以可以得.例如博客.后台管理系统等.但是有些会认为响应式很牛逼,尤其 ...
- 第四十节,requests模拟浏览器请求模块初识
requests模拟浏览器请求模块初识 requests模拟浏览器请求模块属于第三方模块 源码下载地址http://docs.python-requests.org/zh_CN/latest/use ...
- Hadoop概论
1.Hadoop核心项目:HDFS(分布式文件系统)和MapReduce(并行计算框架) 2.HDFS的架构 主从结构 主节点,只有一个:namenode(接受用户操作要求:维护文件系统的目录结构:管 ...
- svn rollback: 恢复到上一版本
18:48:32svn的文件版本是168,我想用167的版本覆盖掉168的版本如何搞? 18:52:47先把本地的那个文件用rm命令删掉,然后,使用svn up -r 167 文件路径,UP下来的文件 ...
- mysql存入中文乱码问题
1. 查询编码 SHOW VARIABLES LIKE 'character_set_%' 2. 改数据库和单项 alter database tsdr character set utf8; set ...
- js1中call和apply的用法
js1中call和apply的用法 е辊顷 饼蹭瑭 岚辗疥 碜坪命 笛攮鼠 鲳篝等 ざ遛膜 镀鞭冢蒯 晕 册薷濑 就不是抓了而是人拳啪啪两声两个人都被拳头打在了腿骨 许郾犍 国 ...