Fix a Tree

A tree is an undirected connected graph without cycles.

Let's consider a rooted undirected tree with n vertices, numbered 1 through n. There are many ways to represent such a tree. One way is to create an array with n integers p1, p2, ..., pn, where pi denotes a parent of vertex i (here, for convenience a root is considered its own parent).

For this rooted tree the array p is [2, 3, 3, 2].

Given a sequence p1, p2, ..., pn, one is able to restore a tree:

  1. There must be exactly one index r that pr = r. A vertex r is a root of the tree.
  2. For all other n - 1 vertices i, there is an edge between vertex i and vertex pi.

A sequence p1, p2, ..., pn is called valid if the described procedure generates some (any) rooted tree. For example, for n = 3 sequences (1,2,2), (2,3,1) and (2,1,3) are not valid.

You are given a sequence a1, a2, ..., an, not necessarily valid. Your task is to change the minimum number of elements, in order to get a valid sequence. Print the minimum number of changes and an example of a valid sequence after that number of changes. If there are many valid sequences achievable in the minimum number of changes, print any of them.

Input

The first line of the input contains an integer n (2 ≤ n ≤ 200 000) — the number of vertices in the tree.

The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n).

Output

In the first line print the minimum number of elements to change, in order to get a valid sequence.

In the second line, print any valid sequence possible to get from (a1, a2, ..., an) in the minimum number of changes. If there are many such sequences, any of them will be accepted.

Examples
Input
4
2 3 3 4
Output
1
2 3 4 4
Input
5
3 2 2 5 3
Output
0
3 2 2 5 3
Input
8
2 3 5 4 1 6 6 7
Output
2
2 3 7 8 1 6 6 7
Note

In the first sample, it's enough to change one element. In the provided output, a sequence represents a tree rooted in a vertex 4 (because p4 = 4), which you can see on the left drawing below. One of other correct solutions would be a sequence 2 3 3 2, representing a tree rooted in vertex 3 (right drawing below). On both drawings, roots are painted red.

In the second sample, the given sequence is already valid.

分析:dfs循环一遍,遇到环时该点是可能修改的答案。注意,如果树已有根的话就用任意一个根,否则在断点处建一个根;

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#include <ext/rope>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)
#define vi vector<int>
#define pii pair<int,int>
#define mod 1000000007
#define inf 0x3f3f3f3f
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
const int maxn=2e5+;
const int dis[][]={{,},{-,},{,-},{,}};
using namespace std;
using namespace __gnu_cxx;
ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=;while(q){if(q&)f=f*p;p=p*p;q>>=;}return f;}
int n,m,a[maxn],vis[maxn],cnt,ans;
bool flag;
set<int>p;
void dfs(int now)
{
vis[now]=cnt;
if(vis[a[now]]==cnt)
{
p.insert(now);return;
}
else if(vis[a[now]])return;
else dfs(a[now]);
}
int main()
{
int i,j,k,t;
scanf("%d",&n);
rep(i,,n){
scanf("%d",&a[i]);
if(a[i]==i)
ans=i,flag=true;
}
rep(i,,n)
if(!vis[i])++cnt,dfs(i);
if(flag==false)
printf("%d\n",p.size()),ans=*p.begin();
else
printf("%d\n",p.size()-);
rep(i,,n)
{
if(p.find(i)!=p.end())a[i]=ans;
}
rep(i,,n)
printf("%d ",a[i]);
//system ("pause");
return ;
}

Fix a Tree的更多相关文章

  1. Codeforces Round #363 (Div. 2) 698B Fix a Tree

    D. Fix a Tree time limit per test 2 seconds memory limit per test 256 megabytes     A tree is an und ...

  2. Codeforces Round #363 (Div. 2)D. Fix a Tree(并查集)

    D. Fix a Tree time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  3. Problem - D - Codeforces Fix a Tree

    Problem - D - Codeforces  Fix a Tree 看完第一名的代码,顿然醒悟... 我可以把所有单独的点全部当成线,那么只有线和环. 如果全是线的话,直接线的条数-1,便是操作 ...

  4. Codeforces Round #363 (Div. 2) D. Fix a Tree —— 并查集

    题目链接:http://codeforces.com/contest/699/problem/D D. Fix a Tree time limit per test 2 seconds memory ...

  5. Codeforces Fix a Tree

    Fix a Tree time limit per test2 seconds A tree is an undirected connected graph without cycles. Let' ...

  6. 【27.48%】【codeforces 699D】 Fix a Tree

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  7. Codeforces 699D Fix a Tree 并查集

    原题:http://codeforces.com/contest/699/problem/D 题目中所描述的从属关系,可以看作是一个一个块,可以用并查集来维护这个森林.这些从属关系中会有两种环,第一种 ...

  8. 【CodeForces 699D】Fix a Tree

    dfs找出联通块个数cnt,当形成环时,令指向已访问过节点的节点变成指向-1,即做一个标记.把它作为该联通图的根. 把所有联通的图变成一颗树,如果存在指向自己的点,那么它所在的联通块就是一个树(n-1 ...

  9. Codeforces Round #363 Fix a Tree(树 拓扑排序)

    先做拓扑排序,再bfs处理 #include<cstdio> #include<iostream> #include<cstdlib> #include<cs ...

随机推荐

  1. C语言_数字排列顺序

    #include <stdio.h> #include <stdlib.h> #define LENGTH 8 void main() { , , , , , , , }; ; ...

  2. VBS基础篇 - 对象(7) - TextStream对象

    VBS基础篇 - 对象(7) - TextStream对象   TextStream对象是用于访问文本文件的对象,它是FileSystemObject一个独立的附属对象,但在使用TextStream对 ...

  3. cmstop传递什么控制器和方法---就实例化该控制器

    object顶级类class object 第一级抽象类controllerabstract class controller extends object 第二级抽象类controller_abst ...

  4. mvc UrlHelper

    何谓Helper,其实就是在View中为了实现一些灵活功能而写的方法组. 其实ASP.NET MVC的View是Aspx的页面,本身可以声明定义方法,那为什么要有Helper呢? 其实无非是将界面与逻 ...

  5. unlinking

    When a file name is deleted from the directory tree, the file name's connection to the inode number ...

  6. NSBundle的用法

    bundle是一个目录,其中包含了程序会使用到的资源. 这些资源包含了如图像,声音,编译好的代码,nib文件(用户也会把bundle称为plug-in). 对应bundle,cocoa提供了类NSBu ...

  7. 使用 Eclipse Memory Analyzer 进行简单内存泄漏分析

    Java 内存泄露的根本原因: 保存了不可能再被访问的变量类型的引用.因此我们的目的就是要找出这样的引用. 1.测试代码: public class MainActivity extends Acti ...

  8. 很好的容斥思想 HDU 5514

    题目描述:有n只青蛙,m个石头(围成圆圈).第i只青蛙每次只能条a[i]个石头,问最后所有青蛙跳过的石头的下标总和是多少? 思路:经过绘图我们发现,每次跳过的位置一定是k*gcd(a[i], m).然 ...

  9. rownum使用方法

    rownum使用方法: .使用rownum子查询: rownum是一个总是从1开始的伪列,当查询条件rownum)时,不能从数据库查到记录,因此要 通过子查询解决:; 结果: SQL; R ID US ...

  10. 扩展方法之ToDictionary()

    Person类: public class Person { public int Id { set; get; } public string WorkNo { set; get; } public ...