Fix a Tree

A tree is an undirected connected graph without cycles.

Let's consider a rooted undirected tree with n vertices, numbered 1 through n. There are many ways to represent such a tree. One way is to create an array with n integers p1, p2, ..., pn, where pi denotes a parent of vertex i (here, for convenience a root is considered its own parent).

For this rooted tree the array p is [2, 3, 3, 2].

Given a sequence p1, p2, ..., pn, one is able to restore a tree:

  1. There must be exactly one index r that pr = r. A vertex r is a root of the tree.
  2. For all other n - 1 vertices i, there is an edge between vertex i and vertex pi.

A sequence p1, p2, ..., pn is called valid if the described procedure generates some (any) rooted tree. For example, for n = 3 sequences (1,2,2), (2,3,1) and (2,1,3) are not valid.

You are given a sequence a1, a2, ..., an, not necessarily valid. Your task is to change the minimum number of elements, in order to get a valid sequence. Print the minimum number of changes and an example of a valid sequence after that number of changes. If there are many valid sequences achievable in the minimum number of changes, print any of them.

Input

The first line of the input contains an integer n (2 ≤ n ≤ 200 000) — the number of vertices in the tree.

The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n).

Output

In the first line print the minimum number of elements to change, in order to get a valid sequence.

In the second line, print any valid sequence possible to get from (a1, a2, ..., an) in the minimum number of changes. If there are many such sequences, any of them will be accepted.

Examples
Input
4
2 3 3 4
Output
1
2 3 4 4
Input
5
3 2 2 5 3
Output
0
3 2 2 5 3
Input
8
2 3 5 4 1 6 6 7
Output
2
2 3 7 8 1 6 6 7
Note

In the first sample, it's enough to change one element. In the provided output, a sequence represents a tree rooted in a vertex 4 (because p4 = 4), which you can see on the left drawing below. One of other correct solutions would be a sequence 2 3 3 2, representing a tree rooted in vertex 3 (right drawing below). On both drawings, roots are painted red.

In the second sample, the given sequence is already valid.

分析:dfs循环一遍,遇到环时该点是可能修改的答案。注意,如果树已有根的话就用任意一个根,否则在断点处建一个根;

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <list>
#include <ext/rope>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++)
#define vi vector<int>
#define pii pair<int,int>
#define mod 1000000007
#define inf 0x3f3f3f3f
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
const int maxn=2e5+;
const int dis[][]={{,},{-,},{,-},{,}};
using namespace std;
using namespace __gnu_cxx;
ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=;while(q){if(q&)f=f*p;p=p*p;q>>=;}return f;}
int n,m,a[maxn],vis[maxn],cnt,ans;
bool flag;
set<int>p;
void dfs(int now)
{
vis[now]=cnt;
if(vis[a[now]]==cnt)
{
p.insert(now);return;
}
else if(vis[a[now]])return;
else dfs(a[now]);
}
int main()
{
int i,j,k,t;
scanf("%d",&n);
rep(i,,n){
scanf("%d",&a[i]);
if(a[i]==i)
ans=i,flag=true;
}
rep(i,,n)
if(!vis[i])++cnt,dfs(i);
if(flag==false)
printf("%d\n",p.size()),ans=*p.begin();
else
printf("%d\n",p.size()-);
rep(i,,n)
{
if(p.find(i)!=p.end())a[i]=ans;
}
rep(i,,n)
printf("%d ",a[i]);
//system ("pause");
return ;
}

Fix a Tree的更多相关文章

  1. Codeforces Round #363 (Div. 2) 698B Fix a Tree

    D. Fix a Tree time limit per test 2 seconds memory limit per test 256 megabytes     A tree is an und ...

  2. Codeforces Round #363 (Div. 2)D. Fix a Tree(并查集)

    D. Fix a Tree time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  3. Problem - D - Codeforces Fix a Tree

    Problem - D - Codeforces  Fix a Tree 看完第一名的代码,顿然醒悟... 我可以把所有单独的点全部当成线,那么只有线和环. 如果全是线的话,直接线的条数-1,便是操作 ...

  4. Codeforces Round #363 (Div. 2) D. Fix a Tree —— 并查集

    题目链接:http://codeforces.com/contest/699/problem/D D. Fix a Tree time limit per test 2 seconds memory ...

  5. Codeforces Fix a Tree

    Fix a Tree time limit per test2 seconds A tree is an undirected connected graph without cycles. Let' ...

  6. 【27.48%】【codeforces 699D】 Fix a Tree

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  7. Codeforces 699D Fix a Tree 并查集

    原题:http://codeforces.com/contest/699/problem/D 题目中所描述的从属关系,可以看作是一个一个块,可以用并查集来维护这个森林.这些从属关系中会有两种环,第一种 ...

  8. 【CodeForces 699D】Fix a Tree

    dfs找出联通块个数cnt,当形成环时,令指向已访问过节点的节点变成指向-1,即做一个标记.把它作为该联通图的根. 把所有联通的图变成一颗树,如果存在指向自己的点,那么它所在的联通块就是一个树(n-1 ...

  9. Codeforces Round #363 Fix a Tree(树 拓扑排序)

    先做拓扑排序,再bfs处理 #include<cstdio> #include<iostream> #include<cstdlib> #include<cs ...

随机推荐

  1. A. Brain's Photos ——Codeforces Round #368 (Div. 2)

    A. Brain's Photos time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  2. 观看网上的N多教程有感

    MD只想说一句,我擦. 长篇大论,有个叼毛用呀,显示你文采.... 糟粕真TMD多,直接简单的步骤多好,不要显示的你有多专业,其实就是一个二逼. 还有N多论坛,扯淡的人更多.

  3. 初次使用IntelliJ IDEA 2016.2

    换电脑的还有一个目的就是我准备采用新的IDE了 之前一直用的是myeclipse,但是现在准备尝试idea 这边做个记录,idea的破解参考下面这个网址:http://blog.csdn.net/u0 ...

  4. html 细线表格

    可以<table width="800px" cellpadding="0" border="1px" style="bor ...

  5. Eva's Problem

    Eva's Problem Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 20000/10000K (Java/Other) Total ...

  6. Fatal error: Class ‘mysqli’ not found in解决办法

    在使用[$conn = new \mysqli($servername, $username, $password,$dbname);]连接msql数据库的时候 出现错误:[Fatal error: ...

  7. E212:无法打开并写入文件

    用vi编辑文件是  老师出现这样的错误 有些文件   需要root权限才能修改   切换成root权限就行了

  8. DataGridView直接导出EXCEL

    1public void DataToExcel(DataGridView m_DataView) { SaveFileDialog kk = new SaveFileDialog(); kk.Tit ...

  9. SVN-svn path not found: 404 Not Found

    报错信息是本地找不到文件 因为我直接移动了项目中的java文件到别的目录,在SVN看来相当于变相的删掉了一个目录的文件,在另外一个目录新增文件, 但是移动文件SVN是不会做删除记录到日志文件中的,所以 ...

  10. asp网站中使用百度ueditor教程

    1.根据网站类型及编码选择相应的ueditor版本,如我的网站编码为gb2312,则选择ueditor 1.43 asp gbk版.2.本机IE浏览器应为8.0或以上,8.0以下的ueditor 1. ...