很方面的,懒得自己写了。

  1. clc  
  2. clear all   
  3.  load('wdtFeature');  
  4.      
  5. %    训练样本:train_data             % 矩阵,每行一个样本,每列一个特征  
  6. %   训练样本标签:train_label       % 列向量  
  7. %   测试样本:test_data  
  8. %   测试样本标签:test_label  
  9.  train_data = traindata'  
  10.  train_label = trainlabel'  
  11.  test_data = testdata'  
  12.  test_label = testlabel'  
  13. %  K近邻分类器 (KNN)  
  14. % mdl = ClassificationKNN.fit(train_data,train_label,'NumNeighbors',1);  
  15. % predict_label   =       predict(mdl, test_data);  
  16. % accuracy         =       length(find(predict_label == test_label))/length(test_label)*100  
  17. %                  
  18. %  94%  
  19. % 随机森林分类器(Random Forest)  
  20. % nTree = 5  
  21. % B = TreeBagger(nTree,train_data,train_label);  
  22. % predict_label = predict(B,test_data);  
  23. %    
  24. % m=0;  
  25. % n=0;  
  26. for i=1:50  
  27. %     if predict_label{i,1}>0  
  28. %         m=m+1;  
  29. %     end  
  30. %     if predict_label{i+50,1}<0  
  31. %         n=n+1;  
  32. %     end  
  33. % end  
  34. %   
  35. % s=m+n  
  36. % r=s/100  
  37.     
  38. %  result 50%  
  39.     
  40. % **********************************************************************  
  41. % 朴素贝叶斯 (Na?ve Bayes)  
  42. % nb = NaiveBayes.fit(train_data, train_label);  
  43. % predict_label   =       predict(nb, test_data);  
  44. % accuracy         =       length(find(predict_label == test_label))/length(test_label)*100;  
  45. %   
  46. %   
  47. % % 结果 81%  
  48. % % **********************************************************************  
  49. % % 集成学习方法(Ensembles for Boosting, Bagging, or Random Subspace)  
  50. % ens = fitensemble(train_data,train_label,'AdaBoostM1' ,100,'tree','type','classification');  
  51. % predict_label   =       predict(ens, test_data);  
  52. %   
  53. % m=0;  
  54. % n=0;  
  55. for i=1:50  
  56. %     if predict_label(i,1)>0  
  57. %         m=m+1;  
  58. %     end  
  59. %     if predict_label(i+50,1)<0  
  60. %         n=n+1;  
  61. %     end  
  62. % end  
  63. %   
  64. % s=m+n  
  65. % r=s/100  
  66.     
  67. % 结果 97%  
  68. % **********************************************************************  
  69. % 鉴别分析分类器(discriminant analysis classifier)  
  70. % obj = ClassificationDiscriminant.fit(train_data, train_label);  
  71. % predict_label   =       predict(obj, test_data);  
  72. %    
  73. % m=0;  
  74. % n=0;  
  75. for i=1:50  
  76. %     if predict_label(i,1)>0  
  77. %         m=m+1;  
  78. %     end  
  79. %     if predict_label(i+50,1)<0  
  80. %         n=n+1;  
  81. %     end  
  82. % end  
  83. %   
  84. % s=m+n  
  85. % r=s/100  
  86. %  result 86%  
  87. % **********************************************************************  
  88. % 支持向量机(Support Vector Machine, SVM)  
  89. SVMStruct = svmtrain(train_data, train_label);  
  90. predict_label  = svmclassify(SVMStruct, test_data)  
  91. m=0;  
  92. n=0;  
  93. for i=1:50  
  94.     if predict_label(i,1)>0  
  95.         m=m+1;  
  96.     end  
  97.     if predict_label(i+50,1)<0  
  98.         n=n+1;  
  99.     end  
  100. end  
  101.     
  102. s=m+n  
  103. r=s/100  
  104.     
  105. %  result 86% 

原文链接:http://blog.csdn.net/u014114990/article/details/51067059

Matlab自带常用的分类器,直接复制用就好了,很方面。的更多相关文章

  1. matlab进阶:常用功能的实现,常用函数的说明

    常用功能的实现 获取当前脚本所在目录 current_script_dir = fileparts(mfilename('fullpath')); % 结尾不带'/' 常用函数的说明 bsxfun m ...

  2. 使用matlab自带工具实现rcnn

    平台:matlab2016b matlab自带一个cifar10Net工具可用于深度学习. 图片标注 这里使用的是matlab自带的工具trainingImageLabeler对图像进行roi的标注. ...

  3. matlab自带princomp(PCA降维方式)

    matlab 中自带的函数就不必怀疑. princomp:principal componet analysis (PCA). [COEFF,SCORE,latent,tsquare]=princom ...

  4. 如何利用OpenCV自带的级联分类器训练程序训练分类器

    介绍 使用级联分类器工作包括两个阶段:训练和检测. 检测部分在OpenCVobjdetect 模块的文档中有介绍,在那个文档中给出了一些级联分类器的基本介绍.当前的指南描述了如何训练分类器:准备训练数 ...

  5. Lua基本语法-书写规范以及自带常用函数

    Lua基本语法-书写规范和常用函数 本文提供全流程,中文翻译.Chinar坚持将简单的生活方式,带给世人!(拥有更好的阅读体验 -- 高分辨率用户请根据需求调整网页缩放比例) 1 String Ope ...

  6. matlab GUI之常用对话框(四)-- 输入对话框 inputdlg、目录对话框 uigetdir、列表对话框 listdlg

    常用对话框(四) 1.输入对话框  inputdlg answer = inputdlg(prompt) answer = inputdlg(prompt,dlg_title) answer = in ...

  7. matlab GUI之常用对话框(三)-- dialog \ errordlg \ warndlg \ helpdlg \ msgbox \questdlg

    常用的对话框(三) 1.普通对话框  dialog 调用格式: h=dialog('PropertyName','PropertyValue'......) %普通对话框 h=dialog( ]); ...

  8. matlab GUI之常用对话框(二)-- 进度条的使用方法

    常用对话框(二) 进度条   waitbar 调用格式: h = waitbar(x,'message')  waitbar(x,'message','CreateCancelBtn','button ...

  9. matlab GUI之常用对话框(一)-- uigetfile\ uiputfile \ uisetcolor \ uisetfont

    常用对话框(一) 1.uigetfile  文件打开对话框 调用格式:      [FileName,PathName,FilterIndex]=uigetfile or     [FileName, ...

随机推荐

  1. Stanford机器学习课程之一——引言

    Andrew Ng的Machine Learning课程,在网易公开课上有中文版视频http://v.163.com/special/opencourse/machinelearning.html,六 ...

  2. 理解 Objective-C Runtime

    初学 Objective-C(以下简称ObjC) 的人很容易忽略一个 ObjC 特性 —— ObjC Runtime.这是因为这门语言很容易上手,几个小时就能学会怎么使用,所以程序员们往往会把时间都花 ...

  3. Oracle RAC学习笔记01-集群理论

    Oracle RAC学习笔记01-集群理论 1.集群相关理论概述 2.Oracle Clusterware 3.Oracle RAC 原理 写在前面: 最近一直在看张晓明的大话Oracle RAC,真 ...

  4. JS与浏览器的几个兼容性问题

    第一个:有的浏览器不支持getElementsByClassName(),所以需要写一个function()来得到需要标签的class,然后进行class的增加.删除等操作. 第二个:在需要得到特定标 ...

  5. 字符串匹配KMP算法中Next[]数组和Nextval[]数组求法

    数据结构课本上给了这么一段算法求nextval9[]数组 int get_nextval(SString T,int &nextval[ ]) { //求模式串T的next函数修正值并存入数组 ...

  6. 简学Python第一章__进入PY的世界

    #cnblogs_post_body h2 { background: linear-gradient(to bottom, #18c0ff 0%,#0c7eff 100%); color: #fff ...

  7. 构建自动化前端样式回归测试——BackstopJS篇

    在使用scss和less开发的时候,遇到过一件很有趣的事,因为网站需要支持响应式,就开了一个响应式样式框架,简单的几百行scss代码,居然生成了近100KB的css代码,因此决定重构这个样式库.而重构 ...

  8. RejectedExecutionException 分析

    当往一个固定队列ArrayBlockingQueue 不停的提交任务时,会发生什么? 请看如下代码 private static final int QUEUE_SIZE = 20; private ...

  9. C语言 一维数组叠加为二维数组样例

    这里参看memcpy的用法,将一个一维整型数组不停的叠加为二维数组 使用宏定义来控制二维数组的行列 代码如下: #include <stdio.h> #include <stdlib ...

  10. python - bilibili(三)wireshark分析

    当我们开始打开浏览器,并进入B站直播网页前,我们打开wireshark软件(软件的下载与安装请百度一下)开始截取当前数据. 然后输入直播间网址,enter进入就可以停止截取数据了,然后我们分析所截取的 ...