POJ 2914 题意:给定一个无向图 小于500节点,和边的权值,求最小的代价将图拆为两个联通分量。

Stoer Wagner算法:

(1)用类似prim算法的方法求“最大生成树”,但是它比较的权值为w(A,x)A为所有在树上的点,x不在树上。

(2)剩下最后一个节点等待加入树的时候,用W(A,xn)更新ans ,并且将最后一个节点和倒数第二个节点合并。

(3)运行N-1次“最大生成树”,就得到了答案

补充几点:(1)像这种数据规模比较小的题目,没必要用优先队列或者堆优化,反而会超时。。

(2)这道题用流输入输出会超时。。。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
using namespace std;
typedef long long int LL;
const int maxn=,maxm=maxn*maxn/;
int w[maxn][maxn],dist[maxn],m,n,point[maxn];
bool intree[maxn];
int po(int x)
{
if(x==point[x])return x;
else return point[x]=po(point[x]);
}
void combine(int a,int b)
{
a=po(a);b=po(b);
bool counted[maxn];memset(counted,,sizeof(counted));
for(int i=;i<n;i++)
{
int np=po(i);
if((np==a)||(np==b)||(counted[np]))continue;
counted[np]=true;
w[np][a]+=w[np][b];w[a][np]+=w[b][np];
}
point[b]=a;
}
int main()
{
ios::sync_with_stdio(false);
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(w,,sizeof(w));
int a,b,c;
for(int i=;i<m;i++)
{
scanf("%d%d%d",&a,&b,&c);
w[a][b]+=c;w[b][a]+=c;
}
for(int i=;i<n;i++)
point[i]=i;
int ans=1e+;
for(int ii=;ii<n;ii++)
{
if(ans==)break;
memset(dist,,sizeof(dist));memset(intree,,sizeof(intree));
int pre=po(),sum=;
intree[pre]=true;
while(sum<=(n-ii))
{
int maxk=-;
bool counted[maxn];memset(counted,,sizeof(counted));
for(int i=;i<n;i++)
{
int np=po(i);
if((intree[np])||(counted[np]))continue;
counted[np]=true;
dist[np]+=w[pre][np];
if((maxk==-)||(dist[np]>dist[maxk]))
{
maxk=np;
}
}
if(maxk==-){ans=;break;}
intree[maxk]=true;
if(sum==(n-ii))
{
combine(pre,maxk);
ans=min(ans,dist[maxk]);
}
pre=maxk;
sum++;
}
}
printf("%d\n",ans);
}
return ;
}

POJ 2914 Minimum Cut Stoer Wagner 算法 无向图最小割的更多相关文章

  1. POJ 2914 - Minimum Cut - [stoer-wagner算法讲解/模板]

    首先是当年stoer和wagner两位大佬发表的关于这个算法的论文:A Simple Min-Cut Algorithm 直接上算法部分: 分割线 begin 在这整篇论文中,我们假设一个普通无向图G ...

  2. POJ 2914 Minimum Cut 最小割算法题解

    最标准的最小割算法应用题目. 核心思想就是缩边:先缩小最大的边.然后缩小次大的边.依此缩小 基础算法:Prime最小生成树算法 只是本题測试的数据好像怪怪的,相同的算法时间执行会区别非常大,并且一样的 ...

  3. POJ 2914 Minimum Cut【最小割 Stoer-Wangner】

    题意:求全局最小割 不能用网络流求最小割,枚举举汇点要O(n),最短增广路最大流算法求最大流是O(n2m)复杂度,在复杂网络中O(m)=O(n2),算法总复杂度就是O(n5):就算你用其他求最大流的算 ...

  4. POJ 2914 Minimum Cut 最小割图论

    Description Given an undirected graph, in which two vertices can be connected by multiple edges, wha ...

  5. POJ 2914 Minimum Cut

    Minimum Cut Time Limit: 10000MS   Memory Limit: 65536K Total Submissions: 9319   Accepted: 3910 Case ...

  6. POJ 2914 Minimum Cut (全局最小割)

    [题目链接] http://poj.org/problem?id=2914 [题目大意] 求出一个最小边割集,使得图不连通 [题解] 利用stoerwagner算法直接求出全局最小割,即答案. [代码 ...

  7. POJ 2914 Minimum Cut 全局最小割

    裸的全局最小割了吧 有重边,用邻接矩阵的时候要小心 #include<iostream> #include<cstdio> #include<bitset> #in ...

  8. [全局最小割][Stoer-Wagner 算法] 无向图最小割

    带有图片例子的 [BLOG] 复杂度是$(n ^ 3)$ HDU3691 // #pragma GCC optimize(2) // #pragma GCC optimize(3) // #pragm ...

  9. 最小割树(Gomory-Hu Tree)求无向图最小割详解 附 BZOJ2229,BZOJ4519题解

    最小割树(Gomory-Hu Tree) 前置知识 Gomory-Hu Tree是用来解决无向图最小割的问题的,所以我们需要了解无向图最小割的定义 和有向图类似,无向图上两点(x,y)的割定义为一个边 ...

随机推荐

  1. 网络请求工具--AFNetworking 分类: ios技术 2015-02-03 08:17 76人阅读 评论(0) 收藏

    在我们开发过程中,网络请求是必不可少的,对于网络框架,现在主流的大概只有三类:ASI框架: HTTP终结者(已经停止更新了),MKNetworkKit ,AFN.今天我就来浅谈一下这个AFN AFNe ...

  2. UVa 10945 - Mother bear

    题目大意:给一个字符串,判断是否回文(忽略大小写,忽略非字母字符). #include <cstdio> #include <cctype> #include <cstr ...

  3. mysql 省市联动sql 语句

    /*MySQL Data TransferSource Host: localhostSource Database: virgoTarget Host: localhostTarget Databa ...

  4. shell 整理,更新,记录

    菜鸟级awk,读取android manifest,把key->value 保存到path.rc. awk -F "name=" '{if(/project path/) p ...

  5. APK的反编译

    有秘密的地方就有见不得光的东西,我讨厌这些,所以对于某一个XX圈APP极其反感,感觉就像一个色情网站 一.ApkTool的使用 看了几个教程,自己下载的好像总是不完整,下载包解压后一个没有aapt.e ...

  6. [原]崩溃在ole32!CStdMarshal::DisconnectSrvIPIDs

    最近项目里遇到一个崩溃,不定期出现,很是头疼!今晚终于忍无可忍,下决心要干掉它!(于是用凉水洗了把脸,开始分析dump)希望凌晨的这篇总结对有相似经历的朋友有所启发!(看之前相关的几个dump可以猜到 ...

  7. iOS 倒出spa文件 打包

    1. 修改Build Settings 修改 Code Signing: codesign failded 意思是签名错误,看看是否xcode -perferences是否没有登录,还有就是钥匙串密码 ...

  8. PHP中PDO错误/异常(PDOException)处理

    PDO 提供了三种不同的错误处理模式,以满足不同风格的应用开发: PDO::ERRMODE_SILENT 此为默认模式. PDO 将只简单地设置错误码,可使用 PDO::errorCode() 和 P ...

  9. Tomcat配置全攻略

    tomcat的的下载地址http://www.apache.org/dist/jakarta/tomcat-4/ 1.安装jdk,详细操作请参考本站windows 2k和redhat 8.0下java ...

  10. Java:网络编程

    一.因特网地址 InetAddress类:实现主机名和因特网地址之间的转换. InetAddress address=InetAddress.getByName(String);返回一个InetAdd ...