POJ 2914 题意:给定一个无向图 小于500节点,和边的权值,求最小的代价将图拆为两个联通分量。

Stoer Wagner算法:

(1)用类似prim算法的方法求“最大生成树”,但是它比较的权值为w(A,x)A为所有在树上的点,x不在树上。

(2)剩下最后一个节点等待加入树的时候,用W(A,xn)更新ans ,并且将最后一个节点和倒数第二个节点合并。

(3)运行N-1次“最大生成树”,就得到了答案

补充几点:(1)像这种数据规模比较小的题目,没必要用优先队列或者堆优化,反而会超时。。

(2)这道题用流输入输出会超时。。。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
using namespace std;
typedef long long int LL;
const int maxn=,maxm=maxn*maxn/;
int w[maxn][maxn],dist[maxn],m,n,point[maxn];
bool intree[maxn];
int po(int x)
{
if(x==point[x])return x;
else return point[x]=po(point[x]);
}
void combine(int a,int b)
{
a=po(a);b=po(b);
bool counted[maxn];memset(counted,,sizeof(counted));
for(int i=;i<n;i++)
{
int np=po(i);
if((np==a)||(np==b)||(counted[np]))continue;
counted[np]=true;
w[np][a]+=w[np][b];w[a][np]+=w[b][np];
}
point[b]=a;
}
int main()
{
ios::sync_with_stdio(false);
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(w,,sizeof(w));
int a,b,c;
for(int i=;i<m;i++)
{
scanf("%d%d%d",&a,&b,&c);
w[a][b]+=c;w[b][a]+=c;
}
for(int i=;i<n;i++)
point[i]=i;
int ans=1e+;
for(int ii=;ii<n;ii++)
{
if(ans==)break;
memset(dist,,sizeof(dist));memset(intree,,sizeof(intree));
int pre=po(),sum=;
intree[pre]=true;
while(sum<=(n-ii))
{
int maxk=-;
bool counted[maxn];memset(counted,,sizeof(counted));
for(int i=;i<n;i++)
{
int np=po(i);
if((intree[np])||(counted[np]))continue;
counted[np]=true;
dist[np]+=w[pre][np];
if((maxk==-)||(dist[np]>dist[maxk]))
{
maxk=np;
}
}
if(maxk==-){ans=;break;}
intree[maxk]=true;
if(sum==(n-ii))
{
combine(pre,maxk);
ans=min(ans,dist[maxk]);
}
pre=maxk;
sum++;
}
}
printf("%d\n",ans);
}
return ;
}

POJ 2914 Minimum Cut Stoer Wagner 算法 无向图最小割的更多相关文章

  1. POJ 2914 - Minimum Cut - [stoer-wagner算法讲解/模板]

    首先是当年stoer和wagner两位大佬发表的关于这个算法的论文:A Simple Min-Cut Algorithm 直接上算法部分: 分割线 begin 在这整篇论文中,我们假设一个普通无向图G ...

  2. POJ 2914 Minimum Cut 最小割算法题解

    最标准的最小割算法应用题目. 核心思想就是缩边:先缩小最大的边.然后缩小次大的边.依此缩小 基础算法:Prime最小生成树算法 只是本题測试的数据好像怪怪的,相同的算法时间执行会区别非常大,并且一样的 ...

  3. POJ 2914 Minimum Cut【最小割 Stoer-Wangner】

    题意:求全局最小割 不能用网络流求最小割,枚举举汇点要O(n),最短增广路最大流算法求最大流是O(n2m)复杂度,在复杂网络中O(m)=O(n2),算法总复杂度就是O(n5):就算你用其他求最大流的算 ...

  4. POJ 2914 Minimum Cut 最小割图论

    Description Given an undirected graph, in which two vertices can be connected by multiple edges, wha ...

  5. POJ 2914 Minimum Cut

    Minimum Cut Time Limit: 10000MS   Memory Limit: 65536K Total Submissions: 9319   Accepted: 3910 Case ...

  6. POJ 2914 Minimum Cut (全局最小割)

    [题目链接] http://poj.org/problem?id=2914 [题目大意] 求出一个最小边割集,使得图不连通 [题解] 利用stoerwagner算法直接求出全局最小割,即答案. [代码 ...

  7. POJ 2914 Minimum Cut 全局最小割

    裸的全局最小割了吧 有重边,用邻接矩阵的时候要小心 #include<iostream> #include<cstdio> #include<bitset> #in ...

  8. [全局最小割][Stoer-Wagner 算法] 无向图最小割

    带有图片例子的 [BLOG] 复杂度是$(n ^ 3)$ HDU3691 // #pragma GCC optimize(2) // #pragma GCC optimize(3) // #pragm ...

  9. 最小割树(Gomory-Hu Tree)求无向图最小割详解 附 BZOJ2229,BZOJ4519题解

    最小割树(Gomory-Hu Tree) 前置知识 Gomory-Hu Tree是用来解决无向图最小割的问题的,所以我们需要了解无向图最小割的定义 和有向图类似,无向图上两点(x,y)的割定义为一个边 ...

随机推荐

  1. stm32实现待机唤醒

    STM32的低功耗模式有3种:1.睡眠模式(CM3内核停止,外设仍然运行)2.停机模式(所有时钟都停止)3.待机模式(1.8v内核电源关闭) 进入待机模式的方法,以及设置WK_UP引脚用于把STM32 ...

  2. 3)Java学习笔记:内部类

    什么是内部类 内部类是指在一个外部类的内部再定义一个类.内部类作为外部类的一个成员,并且依附于外部类而存在的.内部类可为静态,可用protected和private修饰(而外部类只能使用public和 ...

  3. CSS如何让DIV的宽度随内容的变化

    [css]CSS如何让DIV的宽度随内容的变化 让div根据内容改变大小 div{ width:auto; display:inline-block !important; display:inlin ...

  4. UVa 10653 - Bombs! NO they are Mines!!

    题目大意:给你一个二维迷宫,给定入口和出口,找出最短路径. 无权图上的单源最短路,用BFS解决. #include <cstdio> #include <queue> #inc ...

  5. Oracle数据库中的函数

    1.随机数函数:DBMS_RANDOM.RANDOM )) FROM DUAL; --产生一个100以内的随机数 *dbms_random.value) FROM dual; --产生一个100-10 ...

  6. UVa 103 - Stacking Boxes

    题目大意:矩阵嵌套,不过维数是多维的.有两个个k维的盒子A(a1, a1...ak), B(b1, b2...bk),若能找到(a1...ak)的一个排列使得ai < bi,则盒子A可嵌套在盒子 ...

  7. UVa 10405 & POJ 1458 Longest Common Subsequence

    求最长公共子序列LCS,用动态规划求解. UVa的字符串可能含有空格,开始用scanf("%s", s);就WA了一次...那就用gets吧,怪不得要一行放一个字符串呢. (本来想 ...

  8. ASP.NET MVC TempData使用心得

    说明: 在ASP.NET MVC中資料傳遞主要有ViewData與TempData ViewData主要是Controller傳遞Data給View,存留期只有一個Action,要跨Action要使用 ...

  9. Flex4 flash builder保留MXML转换的AS代码

    Flex4 flash builder保留MXML转换的AS代码 项目->属性->Flex编译器 | 附加的编译参数 加上 -keep 生成的Test005-interface.as文件: ...

  10. Servlet中进行context属性的同步

    Servlet中进行context属性的同步: 必须所有使用context的servlet都进行synchronized才可以实现同步: servlet: package com.stono.serv ...