Known Notation


Time Limit: 2 Seconds      Memory Limit: 131072 KB


Do you know reverse Polish notation (RPN)? It is a known notation in the area of mathematics and computer science. It is also known as postfix notation since every operator in an expression
follows all of its operands. Bob is a student in Marjar University. He is learning RPN recent days.

To clarify the syntax of RPN for those who haven't learnt it before, we will offer some examples here. For instance, to add 3 and 4, one would write "3 4 +" rather than "3 + 4". If there
are multiple operations, the operator is given immediately after its second operand. The arithmetic expression written "3 - 4 + 5" in conventional notation would be written "3 4 - 5 +" in RPN: 4 is first subtracted from 3, and then 5 added to it. Another infix
expression "5 + ((1 + 2) × 4) - 3" can be written down like this in RPN: "5 1 2 + 4 × + 3 -". An advantage of RPN is that it obviates the need for parentheses that are required by infix.

In this problem, we will use the asterisk "*" as the only operator and digits from "1" to "9" (without "0") as components of operands.

You are given an expression in reverse Polish notation. Unfortunately, all space characters are missing. That means the expression are concatenated into several long numeric sequence
which are separated by asterisks. So you cannot distinguish the numbers from the given string.

You task is to check whether the given string can represent a valid RPN expression. If the given string cannot represent any valid RPN, please find out the minimal number of operations
to make it valid. There are two types of operation to adjust the given string:

  1. Insert. You can insert a non-zero digit or an asterisk anywhere. For example, if you insert a "1" at the beginning of "2*3*4", the string becomes "12*3*4".
  2. Swap. You can swap any two characters in the string. For example, if you swap the last two characters of "12*3*4", the string becomes "12*34*".

The strings "2*3*4" and "12*3*4" cannot represent any valid RPN, but the string "12*34*" can represent a valid RPN which is "1 2 * 34 *".

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

There is a non-empty string consists of asterisks and non-zero digits. The length of the string will not exceed 1000.

Output

For each test case, output the minimal number of operations to make the given string able to represent a valid RPN.

Sample Input

3
1*1
11*234**
*

Sample Output

1
0
2

先算最少加入的数, 再交换。


#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N = 1111;
int main()
{
int T;
scanf("%d", &T);
while (T--)
{
char s[N];
scanf("%s", s);
int totNum = 0, totChar = 0;
int len = (int) strlen(s);
int flag = 0;
for (int i = 0; i < len && !flag; ++i)
if (s[i] == '*') flag = 1;
if (!flag)
{
cout << 0 << endl;
continue;
}
int ans = 0;
for (int i = 0; i < len; ++i)
if (s[i] == '*') totChar++;
else totNum++;
if (totChar - totNum + 1 > 0) ans = totChar - totNum + 1;
int a[N * 5];
int curLen = len + ans;
memset(a, 0, sizeof(a));
if (ans > 0)
{
for (int i = ans + 1; i <= curLen; ++i)
if (s[i - 1 - ans] == '*') a[i] = 1;
}
else
{
for (int i = 1; i <= curLen; ++i)
if (s[i - 1] == '*') a[i] = 1;
}
if (!a[curLen])
{
int l = 1;
while (l <= curLen)
{
if (a[l]) break;
else l++;
}
swap(a[l], a[curLen]);
++ans;
}
int r = curLen, pos = 1, tot = 0;
while (pos <= curLen)
{
if (!a[pos])
{
tot++;
pos++;
}
else
{
if (tot < 2)
{
int p = -1;
for (int i = r; i >= 1 && p != -1; --i)
if (!a[i]) p = i;
swap(a[p], a[pos]);
ans++;
pos++;
tot++;
r = p - 1;
}
else
{
tot--;
pos++;
}
}
}
printf("%d\n", ans);
}
return 0;
}


版权声明:本文博客原创文章,博客,未经同意,不得转载。

zoj 3829 Known Notation(2014在牡丹江区域赛k称号)的更多相关文章

  1. ACM学习历程——ZOJ 3829 Known Notation (2014牡丹江区域赛K题)(策略,栈)

    Description Do you know reverse Polish notation (RPN)? It is a known notation in the area of mathema ...

  2. ZOJ 3829 Known Notation (2014牡丹江H称号)

    主题链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do? problemId=5383 Known Notation Time Limit: 2 S ...

  3. zoj 3822 Domination(2014牡丹江区域赛D称号)

    Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headm ...

  4. zoj 3829 Known Notation

    作者:jostree 转载请说明出处 http://www.cnblogs.com/jostree/p/4020792.html 题目链接: zoj 3829 Known Notation 使用贪心+ ...

  5. 贪心+模拟 ZOJ 3829 Known Notation

    题目传送门 /* 题意:一串字符串,问要最少操作数使得成为合法的后缀表达式 贪心+模拟:数字个数 >= *个数+1 所以若数字少了先补上在前面,然后把不合法的*和最后的数字交换,记录次数 岛娘的 ...

  6. ZOJ 3827 Information Entropy(数学题 牡丹江现场赛)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do? problemId=5381 Information Theory is one of t ...

  7. 2014年亚洲区域赛北京赛区现场赛A,D,H,I,K题解(hdu5112,5115,5119,5220,5122)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud 下午在HDU上打了一下今年北京区域赛的重现,过了5题,看来单挑只能拿拿铜牌,呜呜. ...

  8. hdu5080:几何+polya计数(鞍山区域赛K题)

    /* 鞍山区域赛的K题..当时比赛都没来得及看(反正看了也不会) 学了polya定理之后就赶紧跑来补这个题.. 由于几何比较烂写了又丑又长的代码,还debug了很久.. 比较感动的是竟然1Y了.. * ...

  9. ZOJ 3827 Information Entropy (2014牡丹江区域赛)

    题目链接:ZOJ 3827 Information Entropy 依据题目的公式算吧,那个极限是0 AC代码: #include <stdio.h> #include <strin ...

随机推荐

  1. Windows 8 应用开发 - 异步调用

    原文:Windows 8 应用开发 - 异步调用     不论是桌面客户端还是Web应用通常会出现处理时间较长的操作,为了在这段时间内不影响用户与应用之间的交互体验,开发人员通常会使用异步调用技术,使 ...

  2. hdu3530Subsequence rmq

    //使用rmq办,ma[i][j],同i作为一个起点2^j阵列的最大长度值 //启动枚举问最长的子列 //枚举的最大长度2^(j-1)和2^(j)z之间 //然后在该范围内找到 #include< ...

  3. 【原创】leetCodeOj ---Construct Binary Tree from Preorder and Inorder Traversal 解题报告

    原题地址: https://oj.leetcode.com/problems/construct-binary-tree-from-preorder-and-inorder-traversal/ 题目 ...

  4. 几种流行Webservice控制框架

     转会[http://blog.csdn.net/thunder4393/article/details/5787121],写的非常好,以收藏. 1      摘要 开发webservice应用程序中 ...

  5. BootstrapQ 包Bootstrap tree,dialog等待

    官方网站:http://uikoo9.com/bootstrapQ why 事实上bootstrap已经非常好了,唯一的软肋就是js方面有些薄弱,对照easyui就知道了. 能够非常明显的知道boot ...

  6. myEclipse勿删文件怎么恢复

    今天码代码的时候项目里有一个jsp文件不小心被删了,又懒得重写,然后发现myEclipse竟然可以恢复被勿删的文件,当然,也仅仅限于最近被删的文件. 具体怎么恢复呢?-------右键点击被删文件所在 ...

  7. ASP.NET 运行

    ASP.NET 运行 对于ASP.NET开发,排在前五的话题离不开请求生命周期.像什么Cache.身份认证.Role管理.Routing映射,微软到底在请求过程中干了哪些隐秘的事,现在是时候揭晓了.抛 ...

  8. (转)maven设置内存

    Windows环境中 找到文件%M2_HOME%\bin\mvn.bat ,这就是启动Maven的脚本文件,在该文件中你能看到有一行注释为: @REM set MAVEN_OPTS=-Xdebug - ...

  9. C#的WebBrowser控制浏览

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  10. C# WinForm dataGridView 技巧小结

    1.不显示第一个空白列RowHeaderVisible属性设置为false 2.点击cell选取整行SelectinModel属性FullRowSelectRowSelectinModel属性设置或用 ...