luogu

先考虑朴素dp,设\(f_{i,j}\)表示在第\(i\)个村庄放了基站,一共放了\(j\)次,且只考虑前面村庄影响的答案.这里可以把\(j\)放在外面枚举,然后从\(f_{k,j-1}(k<i)\)转移到\(f_{i,j}\)

这里对于每个村庄,能影响它的基站是在一个区间里的,我们先二分找出能影响到它的最左边以及最右边基站位置.然后转移的时候还要考虑一些没被覆盖的村庄的代价,对于\(x\)村庄,如果\(k<L_x\)并且\(i>R_x\),那么要加上\(w_x\)的代价.考虑优化此过程,我们把\(f_{k,j-1}\)的贡献放在以\(k\)为下标的线段树上,每次取前缀最大值转移.然后如果处理完当前的\(i\),然后有些村庄的\(R_x=i\),那么以后的转移放的基站都不能直接覆盖\(x\)了,那么从\(<L_x\)转移过来的基站都要加上\(w_x\)的代价,线段树区间加即可.然后贡献答案是要加上后面没被覆盖的村庄代价

#include<bits/stdc++.h>
#define LL long long
#define uLL unsigned long long
#define db double using namespace std;
const int N=20000+10;
const LL inf=1ll<<40;
int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int n,kk,d[N],p[N][2];
LL f[2][N],dt[N],ans,c[N],w[N];
vector<int> op[N],ad[N];
vector<int>::iterator it;
LL mi[N<<2],tg[N<<2];
void add(int o,LL x){mi[o]+=x,tg[o]+=x;}
void psdn(int o){if(tg[o]) add(o<<1,tg[o]),add(o<<1|1,tg[o]),tg[o]=0;}
void psup(int o){mi[o]=min(mi[o<<1],mi[o<<1|1]);}
void modifc(int o,int l,int r,int lx,LL x)
{
if(l==r){mi[o]=x;return;}
psdn(o);
int mid=(l+r)>>1;
if(lx<=mid) modifc(o<<1,l,mid,lx,x);
else modifc(o<<1|1,mid+1,r,lx,x);
psup(o);
}
void modifa(int o,int l,int r,int ll,int rr,LL x)
{
if(ll<=l&&r<=rr){add(o,x);return;}
psdn(o);
int mid=(l+r)>>1;
if(ll<=mid) modifa(o<<1,l,mid,ll,rr,x);
if(rr>mid) modifa(o<<1|1,mid+1,r,ll,rr,x);
psup(o);
}
LL quer(int o,int l,int r,int ll,int rr)
{
if(ll<=l&&r<=rr) return mi[o];
psdn(o);
LL an=inf,mid=(l+r)>>1;
if(ll<=mid) an=min(an,quer(o<<1,l,mid,ll,rr));
if(rr>mid) an=min(an,quer(o<<1|1,mid+1,r,ll,rr));
psup(o);
return an;
} int main()
{
n=rd(),kk=rd();
for(int i=2;i<=n;++i) d[i]=rd();
for(int i=1;i<=n;++i) c[i]=rd();
for(int i=1;i<=n;++i)
{
int x=rd();
p[i][0]=i;
int l=1,r=i-1;
while(l<=r)
{
int mid=(l+r)>>1;
if(d[i]-d[mid]<=x) p[i][0]=mid,r=mid-1;
else l=mid+1;
}
p[i][1]=i;
l=i+1,r=n;
while(l<=r)
{
int mid=(l+r)>>1;
if(d[mid]-d[i]<=x) p[i][1]=mid,l=mid+1;
else r=mid-1;
}
ad[p[i][0]].push_back(i);
op[p[i][1]].push_back(i);
}
int nw=1,la=0;
for(int i=0;i<=n;++i) f[0][i]=f[1][i]=inf;
f[la][0]=0;
for(int i=1;i<=n;++i)
{
w[i]=rd();
ans+=w[i];
}
for(int i=n,dd=0;i;--i)
{
dt[i]=dd;
for(it=ad[i].begin();it!=ad[i].end();++it) dd+=w[*it];
}
while(kk--)
{
modifc(1,0,n,0,f[la][0]);
for(int i=1;i<=n;++i)
{
f[nw][i]=quer(1,0,n,0,i-1)+c[i];
ans=min(ans,f[nw][i]+dt[i]);
modifc(1,0,n,i,f[la][i]);
for(it=op[i].begin();it!=op[i].end();++it) modifa(1,0,n,0,p[*it][0]-1,w[*it]);
}
for(int i=0;i<=n;++i) f[la][i]=inf;
nw^=1,la^=1;
}
printf("%lld\n",ans);
return 0;
}

luogu P2605 [ZJOI2010]基站选址的更多相关文章

  1. 【题解】Luogu P2605 [ZJOI2010]基站选址

    原题传送门:P2604 [ZJOI2010]基站选址 看一眼题目,变知道这题一定是dp 设f[i][j]表示在第i个村庄修建第j个基站且不考虑i+1~n个村庄的最小费用 可以得出f[i][j] = M ...

  2. luogu P2605 [ZJOI2010]基站选址 线段树优化dp

    LINK:基站选址 md气死我了l达成1结果一直调 显然一个点只建立一个基站 然后可以从左到右进行dp. \(f_{i,j}\)表示强制在i处建立第j个基站的最小值. 暴力枚举转移 复杂度\(n\cd ...

  3. P2605 [ZJOI2010]基站选址

    题目描述 有N个村庄坐落在一条直线上,第i(i>1)个村庄距离第1个村庄的距离为Di.需要在这些村庄中建立不超过K个通讯基站,在第i个村庄建立基站的费用为Ci.如果在距离第i个村庄不超过Si的范 ...

  4. 洛谷$P2605\ [ZJOI2010]$基站选址 线段树优化$dp$

    正解:线段树优化$dp$ 解题报告: 传送门$QwQ$ 难受阿,,,本来想做考试题的,我还造了个精妙无比的题面,然后今天讲$dp$的时候被讲到了$kk$ 先考虑暴力$dp$?就设$f_{i,j}$表示 ...

  5. 【LG2605】[ZJOI2010]基站选址

    [LG2605][ZJOI2010]基站选址 题面 洛谷 题解 先考虑一下暴力怎么写,设\(f_{i,j}\)表示当前\(dp\)到\(i\),且强制选\(i\),目前共放置\(j\)个的方案数. 那 ...

  6. 题解 [ZJOI2010]基站选址

    题解 [ZJOI2010]基站选址 题面 解析 首先考虑一个暴力的DP, 设\(f[i][k]\)表示第\(k\)个基站设在第\(i\)个村庄,且不考虑后面的村庄的最小费用. 那么有\(f[i][k] ...

  7. [ZJOI2010]基站选址,线段树优化DP

    G. base 基站选址 内存限制:128 MiB 时间限制:2000 ms 标准输入输出 题目类型:传统 评测方式:文本比较   题目描述 有N个村庄坐落在一条直线上,第i(i>1)个村庄距离 ...

  8. bzoj 1835/luogu P2605 : [ZJOI2010]base 基站选址

    题目描述 有N个村庄坐落在一条直线上,第i(i>1)个村庄距离第1个村庄的距离为Di.需要在这些村庄中建立不超过K个通讯基站,在第i个村庄建立基站的费用为Ci.如果在距离第i个村庄不超过Si的范 ...

  9. 题解 P2605 【[ZJOI2010]基站选址】(From luoguBlog)

    线段树优化dp 数组f[i][j]表示在前i个村庄内,第j个基站建在i处的最小费用 根据交线牛逼法和王鹤松式可得方程 f[i][j]=min(f[k][j−1]+cost(k,i)) cost(k,i ...

随机推荐

  1. Mathematica——绘制3D图形

    Plot3D Plot3D[ + y, {x, -, }, {y, -, }] ListPointPlot3D 绘制点集 ListPointPlot3D[{{, , }, {, , }}, Color ...

  2. 创建DevExtreme应用程序

    如果你从头开始一个项目,那就使用DevExtreme Angular 模板.生成的项目带导航菜单以及在响应布局中的几个对应的示例视图. 你可以使用 DevExtreme CLI 生成应用程序: npx ...

  3. jquery 复合事件 toggle()方法的使用

    定义和用法 toggle() 方法用于绑定两个或多个事件处理器函数,以响应被选元素的轮流的 click 事件. 语法: $(selector).toggle(function1(),function2 ...

  4. Nginx作为静态资源web服务

    一.CDN 1.定义: 内容分发的逻辑网络. 2.作用: CDN能做到传输延时的最小化. CDN请求示意图如下: 二.静态资源需要配置的一些语法模块. 1.配置语法 - 文件读取 Syntax : s ...

  5. yum源问题

    配置本地yum源 1.使用工具将iso文件上传到操作系统,或者直接挂载iso文件 2.配置yum #cd /etc/yum.repos.d/ 删除多余的repo文件 # vi /etc/yum.rep ...

  6. iOS 修改打包后的.ipa应用名字

    一.修改应用的名字 二.重新签名 下面详细介绍介绍两个步骤: 1.修改应用的名字: 1).解压.ipa文件,在Payload文件夹下有一个.app文件(如下图:)选中.app文件,右键点击“显示包内容 ...

  7. linux下配置服务自动启动

    1.切换到/etc/rc.d/init.d目录下 2.新建脚本,step.sh 3.添加开机启动   chkconfig –add step.sh 4.chkconfig step.sh

  8. LC 384. Shuffle an Array

    Shuffle a set of numbers without duplicates. Example: // Init an array with set 1, 2, and 3. int[] n ...

  9. Mysql密码忘记,修改密码方法

    1.set password for ‘root’@’localhost’ = password(‘czllss’); -- czllss为新密码

  10. 使用Navicat为Oracle新增用户

    步骤请参考帖子https://www.cnblogs.com/franson-2016/p/5925593.html 需要注意的是新增用户时不能使用小写,否则不能登录,之前新增一个小写的用户名,授予c ...