Harmonic Number (LightOJ 1234)(调和级数 或者 区块储存答案)
题解:隔一段数字存一个答案,在查询时,只要找到距离n最近而且小于n的存答案值,再把剩余的暴力跑一遍就可以。
#include <bits/stdc++.h>
using namespace std;
const int N = 1e8 + 10;
const int M = 2e6 + 10;
double a[M];
void Init()
{
a[0] = 0.0;
double ans = 1;
for( int i = 2; i < N; i ++)
{
ans += 1.0 / i;
if(i % 50 == 0)
{
a[i/50] = ans;
}
}
return ;
}
int main()
{
int t,n,cas = 0;
Init();
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
int now = n / 50;
double ans = a[now];
for(int i = now*50 + 1; i <= n; i ++)
{
ans += 1.0 / i;
}
printf("Case %d: %.9lf\n",++cas,ans);
}
return 0;
}
数论正解:
知识点:
调和级数(即f(n))至今没有一个完全正确的公式,但欧拉给出过一个近似公式:(n很大时)
f(n)≈ln(n)+C+1/2*n
欧拉常数值:C≈0.57721566490153286060651209
c++ math库中,log即为ln。
(转自:https://www.cnblogs.com/shentr/p/5296462.html)
因为公式存在误差,在数值n比较小的时候直接暴力求解。
/** 转自:https://www.cnblogs.com/shentr/p/5296462.html */
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
const double r=0.57721566490153286060651209; //欧拉常数
double a[10000];
int main()
{
a[1]=1;
for (int i=2;i<10000;i++)
{
a[i]=a[i-1]+1.0/i;
}
int n;
cin>>n;
for (int kase=1;kase<=n;kase++)
{
int n;
cin>>n;
if (n<10000)
{
printf("Case %d: %.10lf\n",kase,a[n]);
}
else
{
double a=log(n)+r+1.0/(2*n);
//double a=log(n+1)+r;
printf("Case %d: %.10lf\n",kase,a);
}
}
return 0;
}
Problem
In mathematics, the nth harmonic number is the sum of the reciprocals of the first n natural numbers:
In this problem, you are given n, you have to find Hn.
Input
Input starts with an integer T (≤ 10000), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n ≤ 108).
Output
For each case, print the case number and the nth harmonic number. Errors less than 10-8 will be ignored.
Sample Input
12
1
2
3
4
5
6
7
8
9
90000000
99999999
100000000
Sample Output
Case 1: 1
Case 2: 1.5
Case 3: 1.8333333333
Case 4: 2.0833333333
Case 5: 2.2833333333
Case 6: 2.450
Case 7: 2.5928571429
Case 8: 2.7178571429
Case 9: 2.8289682540
Case 10: 18.8925358988
Case 11: 18.9978964039
Case 12: 18.9978964139
Harmonic Number (LightOJ 1234)(调和级数 或者 区块储存答案)的更多相关文章
- Harmonic Number LightOJ - 1234 (分段打表)
题意: 求调和级数,但n很大啦.. 解析: 分段打表 每间隔50存储一个数,在计算时 只需要找到离输入的n最近的那个数 以它为起点 开始计算即可 emm...补充一下调和级数的运算公式 r为常 ...
- I - Harmonic Number LightOJ - 1234 (分段打表+暴力)
题目给的时间限制是3s,所以可以直接暴力来做,注意n的取值范围是1e8,如果开一个1e8的数组会RE.分段打表,可以每100个数记录一次,然后对每次询问先找到它所在的区间,然后在暴力往后找.(学到了~ ...
- LightOJ - 1234 LightOJ - 1245 Harmonic Number(欧拉系数+调和级数)
Harmonic Number In mathematics, the nth harmonic number is the sum of the reciprocals of the first n ...
- LightOJ 1234 Harmonic Number(打表 + 技巧)
http://lightoj.com/volume_showproblem.php?problem=1234 Harmonic Number Time Limit:3000MS Memory ...
- LightOJ 1234 Harmonic Number
D - Harmonic Number Time Limit:3000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu S ...
- LightOJ 1234 Harmonic Number (打表)
Harmonic Number Time Limit:3000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu Submi ...
- LightOJ 1245 Harmonic Number (II)(找规律)
http://lightoj.com/volume_showproblem.php?problem=1245 G - Harmonic Number (II) Time Limit:3000MS ...
- Harmonic Number(调和级数+欧拉常数)
题意:求f(n)=1/1+1/2+1/3+1/4-1/n (1 ≤ n ≤ 108).,精确到10-8 (原题在文末) 知识点: 调和级数(即f(n))至今没有一个完全正确的公式, ...
- Harmonic Number 求Hn; Hn = 1 + 1/2 + 1/3 + ... + 1/n; (n<=1e8) T<=1e4; 精确到1e-8; 打表或者调和级数
/** 题目:Harmonic Number 链接:https://vjudge.net/contest/154246#problem/I 题意:求Hn: Hn = 1 + 1/2 + 1/3 + . ...
随机推荐
- 向量运算(lua,三维) 点乘、叉乘、模、夹角
向量运算在游戏制作中经常用到,稍微总结一下. 一.点乘 如图,假设 向量a与b的点乘表示a在b上的投影与b的模的乘积 公式: 代码: function MathHelper.GetVector3D ...
- 怎样单独遍历NodeList的键、值和键值对
1. 单独遍历键: NodeList.prototype.keys(); 2. 单独遍历值: NodeList.prototype.values(); 3. 遍历键值对: NodeList.proto ...
- 20-Perl 正则表达式
1.Perl 正则表达式正则表达式(regular expression)描述了一种字符串匹配的模式,可以用来检查一个串是否含有某种子串.将匹配的子串做替换或者从某个串中取出符合某个条件的子串等.Pe ...
- Maven maven-compiler-plugin 编译问题
问题:每次右键项目名-maven->update project 时候,项目jdk版本变了,变回1.5版本或者其他版本 解决方案一:修改maven的配置(解压目录的conf\setting.xm ...
- java中的接口和php的接口的区别
php: 规范: 接口是一种特殊的抽象类,这种抽象类中只包含抽象方法和静态常量. 在接口中的抽象方法只能是public的,默认也是public权限. abstract和final修饰符也不能修饰接口中 ...
- DispatcherTimer和Timer的区别
两者区别是 Timer在非UI线程跑的,DispatcherTimer是在UI线程跑的, DispatcherTimer 可以直接更新UI Timer必须使用this.Dispatcher.Begin ...
- layer插件loading快速应用示例
1.页面引用<link rel="stylesheet" href="../Js/layer/skin/layer.css" /><scri ...
- Laravel where条件拼接,数组拼接where条件
问题描述:laravel where 条件拼接 Like出错,搜索不到要搜索的内容. 问题代码: // 作物 $crop_class_id = $request->crop_class_id; ...
- deep_learning_Function_numpy_random.normal()
numpy常用函数之random.normal函数 np.random.normal(loc=0.0, scale=1.0, size=None) 作用: 生成高斯分布的概率密度随机数 loc:f ...
- 接口测试工具中 post请求如何传递多维数组
1,请求参数为数组时,可以采用传递 json格式的形式传递请求参数(字段及字段对应的值如查是字符,都应该用双引号括起来.用单引号会无法识别),后台接收的数据为json . 2,直接以数组格式来请请求 ...