题解:隔一段数字存一个答案,在查询时,只要找到距离n最近而且小于n的存答案值,再把剩余的暴力跑一遍就可以。

#include <bits/stdc++.h>
using namespace std; const int N = 1e8 + 10;
const int M = 2e6 + 10;
double a[M]; void Init()
{
a[0] = 0.0;
double ans = 1;
for( int i = 2; i < N; i ++)
{
ans += 1.0 / i;
if(i % 50 == 0)
{
a[i/50] = ans;
}
}
return ;
} int main()
{
int t,n,cas = 0;
Init();
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
int now = n / 50;
double ans = a[now];
for(int i = now*50 + 1; i <= n; i ++)
{
ans += 1.0 / i;
}
printf("Case %d: %.9lf\n",++cas,ans);
}
return 0;
}

数论正解:

知识点:

调和级数(即f(n))至今没有一个完全正确的公式,但欧拉给出过一个近似公式:(n很大时)

f(n)≈ln(n)+C+1/2*n

欧拉常数值:C≈0.57721566490153286060651209

c++ math库中,log即为ln。

(转自:https://www.cnblogs.com/shentr/p/5296462.html

因为公式存在误差,在数值n比较小的时候直接暴力求解。

/** 转自:https://www.cnblogs.com/shentr/p/5296462.html */
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
const double r=0.57721566490153286060651209; //欧拉常数
double a[10000]; int main()
{
a[1]=1;
for (int i=2;i<10000;i++)
{
a[i]=a[i-1]+1.0/i;
}
int n;
cin>>n;
for (int kase=1;kase<=n;kase++)
{
int n;
cin>>n;
if (n<10000)
{
printf("Case %d: %.10lf\n",kase,a[n]);
}
else
{
double a=log(n)+r+1.0/(2*n);
//double a=log(n+1)+r;
printf("Case %d: %.10lf\n",kase,a);
}
}
return 0;
}

Problem

In mathematics, the nth harmonic number is the sum of the reciprocals of the first n natural numbers:

In this problem, you are given n, you have to find Hn.

Input

Input starts with an integer T (≤ 10000), denoting the number of test cases.

Each case starts with a line containing an integer n (1 ≤ n ≤ 108).

Output

For each case, print the case number and the nth harmonic number. Errors less than 10-8 will be ignored.

Sample Input

12

1

2

3

4

5

6

7

8

9

90000000

99999999

100000000

Sample Output

Case 1: 1

Case 2: 1.5

Case 3: 1.8333333333

Case 4: 2.0833333333

Case 5: 2.2833333333

Case 6: 2.450

Case 7: 2.5928571429

Case 8: 2.7178571429

Case 9: 2.8289682540

Case 10: 18.8925358988

Case 11: 18.9978964039

Case 12: 18.9978964139

Harmonic Number (LightOJ 1234)(调和级数 或者 区块储存答案)的更多相关文章

  1. Harmonic Number LightOJ - 1234 (分段打表)

    题意: 求调和级数,但n很大啦.. 解析: 分段打表  每间隔50存储一个数,在计算时  只需要找到离输入的n最近的那个数 以它为起点 开始计算即可 emm...补充一下调和级数的运算公式   r为常 ...

  2. I - Harmonic Number LightOJ - 1234 (分段打表+暴力)

    题目给的时间限制是3s,所以可以直接暴力来做,注意n的取值范围是1e8,如果开一个1e8的数组会RE.分段打表,可以每100个数记录一次,然后对每次询问先找到它所在的区间,然后在暴力往后找.(学到了~ ...

  3. LightOJ - 1234 LightOJ - 1245 Harmonic Number(欧拉系数+调和级数)

    Harmonic Number In mathematics, the nth harmonic number is the sum of the reciprocals of the first n ...

  4. LightOJ 1234 Harmonic Number(打表 + 技巧)

    http://lightoj.com/volume_showproblem.php?problem=1234 Harmonic Number Time Limit:3000MS     Memory ...

  5. LightOJ 1234 Harmonic Number

    D - Harmonic Number Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu S ...

  6. LightOJ 1234 Harmonic Number (打表)

    Harmonic Number Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Submi ...

  7. LightOJ 1245 Harmonic Number (II)(找规律)

    http://lightoj.com/volume_showproblem.php?problem=1245 G - Harmonic Number (II) Time Limit:3000MS    ...

  8. Harmonic Number(调和级数+欧拉常数)

    题意:求f(n)=1/1+1/2+1/3+1/4-1/n   (1 ≤ n ≤ 108).,精确到10-8    (原题在文末) 知识点:      调和级数(即f(n))至今没有一个完全正确的公式, ...

  9. Harmonic Number 求Hn; Hn = 1 + 1/2 + 1/3 + ... + 1/n; (n<=1e8) T<=1e4; 精确到1e-8; 打表或者调和级数

    /** 题目:Harmonic Number 链接:https://vjudge.net/contest/154246#problem/I 题意:求Hn: Hn = 1 + 1/2 + 1/3 + . ...

随机推荐

  1. go install

    go get使用时的附加参数 使用 go get 时可以配合附加参数显示更多的信息及实现特殊的下载和安装操作,详见下表所示. go get 使用时的附加参数 附加参数 备 注 -v 显示操作流程的日志 ...

  2. 使用filebeat给多个logstash传输数据

    1. filebeat.yml filebeat.inputs: - type: log enabled: true paths: - /var/log/messages - /var/log/dme ...

  3. 面试常考的js题目(三)

    1.查找两个节点的最近的一个共同父节点,可以包括节点自身 function commonParentNode(oNode1, oNode2) { if(oNode1.contains(oNode2)) ...

  4. Left4Dead2 LAN Online

    Left4Dead2 LAN Online Franklin vs Wolverine 求生之路 局域网联机说明 ============================ 局域网联机方法: 1.先找到 ...

  5. java实现spark常用算子之Union

    import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.a ...

  6. Idea破解2019

    转自:https://blog.csdn.net/qq_36622149/article/details/88910952 Idea破解,亲测有效,轻量快捷高效更新记录:首次:Idea破解,亲测有效2 ...

  7. 怎么处理U盘无法正常弹出的情况?

    我们都知道U盘和移动硬盘在使用完毕后需要点击“安全删除硬件并弹出”后才能拔出,这样可以避免U盘还在工作时被拔出而造成的故障. 但有时我们点击“安全删除硬件并弹出”时,系统会提示U盘正在工作,没有办法停 ...

  8. 如何对Win10电脑文件夹选项进行设置?

    文件夹选项是Windows系统中非常重要的一个功能,在这里能对电脑内的文件及文件夹进行各种各样的设置以及操作.在Windows系统升级到Win10版本后,许多界面都发生了变化,文件夹选项也是如此,打开 ...

  9. 【转】草根老师的 linux字符设备驱动详解

    Linux 驱动 之 模块化编程 Linux 驱动之模块参数和符号导出 Linux 设备驱动之字符设备(一) Linux 设备驱动之字符设备(二) Linux 设备驱动之字符设备(三)

  10. Linux rpm yum

    RPM : 1 rpm -q  子选项  软件名 -a :列出已安装所有的软件包 -i :查看指定软件的详细信息 -l:查看指定软件的文件安装清单 -f:查看某个目录.文件是哪个包带来的 rpm -q ...