链接:https://nanti.jisuanke.com/t/39277

思路:

一开始看着很像树分治,就用树分治写了下,发现因为异或操作的特殊性,我们是可以优化树分治中的容斥操作的,不合理的情况只有当两点在一条链上才存在,那么直接一遍dfs从根节点向下跑途中维护一下前缀和,把所有情况中不合理情况造成的值修正。

这样的话时间复杂度就可以降得非常低了,感觉还可以优化,但是懒得写了

代码耗时:142ms.

实现代码:

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const ll M = 2e5+;
const ll inf = 1e18+;
struct node{
ll to,next,w;
}e[M];
const ll mod = ;
struct node1{
ll num,id;
}Xor[M];
bool cmp(node1 x,node1 y){
return x.num < y.num;
}
vector<ll>mp[M],v[M];
ll cnt,n,ans;
ll head[M],sz[M],d[M],md[M];
void add(ll u,ll v,ll w){
e[++cnt].to = v;e[cnt].w = w;e[cnt].next = head[u];head[u] = cnt;
} map<ll,ll>sum,sum1,num; void get_dis(ll u,ll fa){
Xor[++Xor[].num].num = d[u];
Xor[Xor[].num].id = u;
for(ll i = head[u];i;i=e[i].next){
ll v = e[i].to;
if(v != fa){
d[v] = d[u]^e[i].w;
get_dis(v,u);
}
}
return ;
} void get_siz(ll u,ll fa){
sz[u] = ;
for(ll i = head[u];i;i=e[i].next){
ll v = e[i].to;
if(v != fa){
get_siz(v,u);
sz[u] += sz[v];
}
}
}
void gcd(ll a,ll b,ll &d,ll &x,ll &y)
{
if(!b) {d=a;x=;y=;}
else {gcd(b,a%b,d,y,x);y-=x*(a/b);}
}
ll finv(ll a,ll n)
{
ll d,x,y;
gcd(a,n,d,x,y);
return d==?(x+n)%n:-;
}
void cal(ll u){
d[u] = ; Xor[].num = ;
get_dis(u,);
sort(Xor+,Xor++Xor[].num,cmp);
ll st = -,idx = ;
for(ll i = ;i <= Xor[].num;i ++){
if(Xor[i].num != st){
st = Xor[i].num;
mp[++idx].push_back(Xor[i].id);
md[idx] = st;
}
else{
mp[idx].push_back(Xor[i].id);
}
}
ans = ;
for(ll i = ;i <= idx;i ++){
ll num1 = ,num2 = ;
for(ll j = ;j < mp[i].size();j ++){
num1 += sz[mp[i][j]];
num2 += sz[mp[i][j]]*sz[mp[i][j]]%mod;
num1%=mod; num2%=mod;
}
ans += ((num1*num1%mod+mod - num2)%mod)*finv(,mod)%mod;
ans %= mod;
}
for(ll i = ;i <= idx;i ++) mp[i].clear();
} void dfs(ll u,ll fa){
for(ll i = head[u];i;i=e[i].next){
ll v = e[i].to;
if(v == fa) continue;
sum1[d[u]] += (n - sz[v]+mod)%mod;
if(num[d[v]] >= ){
ans = (ans + mod - (sz[v]*sum[d[v]]%mod))%mod;
ans += sz[v]*sum1[d[v]]%mod;
ans %= mod;
}
sum[d[v]] += sz[v];
num[d[v]] += ;
sum[d[v]]%=mod;
sum1[d[v]]%=mod;
dfs(v,u);
sum[d[v]] -= sz[v]-mod;
sum1[d[u]] -= (n-sz[v])-mod;
sum[d[v]]%=mod;
sum1[d[v]]%=mod;
num[d[v]] -= ;
}
} int main()
{
ll v,w;
scanf("%lld",&n);
for(ll i = ;i <= n;i ++){
scanf("%lld%lld",&v,&w);
add(i,v,w); add(v,i,w);
}
get_siz(,);
cal();
sum[] += sz[];
num[] += ;
dfs(,);
ans %= mod;
num.clear(); sum.clear(); sum1.clear();
printf("%lld\n",ans);
}

The 2019 ACM-ICPC China Shannxi Provincial Programming Contest (西安邀请赛重现) J. And And And的更多相关文章

  1. 计蒜客 39272.Tree-树链剖分(点权)+带修改区间异或和 (The 2019 ACM-ICPC China Shannxi Provincial Programming Contest E.) 2019ICPC西安邀请赛现场赛重现赛

    Tree Ming and Hong are playing a simple game called nim game. They have nn piles of stones numbered  ...

  2. C.0689-The 2019 ICPC China Shaanxi Provincial Programming Contest

    We call a string as a 0689-string if this string only consists of digits '0', '6', '8' and '9'. Give ...

  3. B.Grid with Arrows-The 2019 ICPC China Shaanxi Provincial Programming Contest

    BaoBao has just found a grid with $n$ rows and $m$ columns in his left pocket, where the cell in the ...

  4. 计蒜客 39280.Travel-二分+最短路dijkstra-二分过程中保存结果,因为二分完最后的不一定是结果 (The 2019 ACM-ICPC China Shannxi Provincial Programming Contest M.) 2019ICPC西安邀请赛现场赛重现赛

    Travel There are nn planets in the MOT galaxy, and each planet has a unique number from 1 \sim n1∼n. ...

  5. 计蒜客 39279.Swap-打表找规律 (The 2019 ACM-ICPC China Shannxi Provincial Programming Contest L.) 2019ICPC西安邀请赛现场赛重现赛

    Swap There is a sequence of numbers of length nn, and each number in the sequence is different. Ther ...

  6. 计蒜客 39270.Angel's Journey-简单的计算几何 ((The 2019 ACM-ICPC China Shannxi Provincial Programming Contest C.) 2019ICPC西安邀请赛现场赛重现赛

    Angel's Journey “Miyane!” This day Hana asks Miyako for help again. Hana plays the part of angel on ...

  7. 计蒜客 39268.Tasks-签到 (The 2019 ACM-ICPC China Shannxi Provincial Programming Contest A.) 2019ICPC西安邀请赛现场赛重现赛

    Tasks It's too late now, but you still have too much work to do. There are nn tasks on your list. Th ...

  8. The 2018 ACM-ICPC China JiangSu Provincial Programming Contest快速幂取模及求逆元

    题目来源 The 2018 ACM-ICPC China JiangSu Provincial Programming Contest 35.4% 1000ms 65536K Persona5 Per ...

  9. The 2018 ACM-ICPC China JiangSu Provincial Programming Contest J. Set

    Let's consider some math problems. JSZKC has a set A=A={1,2,...,N}. He defines a subset of A as 'Meo ...

随机推荐

  1. P2168 [NOI2015]荷马史诗 k叉哈夫曼树

    思路:哈夫曼编码 提交:1次(参考题解) 题解:类似合并果子$QwQ$ 取出前$k$小(注意如果叶子结点不满的话要补全),合并起来再扔回堆里去. #include<cstdio> #inc ...

  2. soapui如何发送xml格式的字符串

    一个服务需要的xml格式的字符串参数,用soapUI传递参数时要这样写: <![CDATA[<?xml version="1.0" encoding="UTF ...

  3. 事务日志已满 请参阅sys.databases中的log_reuse_wait_desc列解决办法

    http://www.myexception.cn/sql-server/153219.html http://blog.csdn.net/kedingboy12345/article/details ...

  4. 路由器配置——基于链路的OSPF的MD5口令认证

    一.实验目的:掌握基于链路的OSPFMD5口令认证 二.拓扑图: 三.具体步骤配置: (1)R1路由器的配置 Router>enable Router#configure terminal En ...

  5. CSP-S模拟测试 88 题解

    T1 queue: 考场写出dp柿子后觉得很斜率优化,然后因为理解错了题觉得斜率优化完全不可做,只打了暴力. 实际上他是可以乱序的,所以直接sort,正确性比较显然,贪心可证,然后就是个sb斜率优化d ...

  6. SpringMVC配置 事务管理

    1.确保持久层配置完毕 2.pom.xml里追加spring-tx 3.application-context.xml追加 <bean id="transactionManager&q ...

  7. 汇编语言学习-Dos下的调试工具debug的使用教程

    1.常用的debug功能 (1)用Debug的R命令查看.改变CPU寄存器内容: (2)用Debug的D命令查看内存中的内容: (3)用Debug的E命令查看内存中的内容: (4)用Debug的U命令 ...

  8. Beyond Compare4激活码(版本 4.2.8)

    w4G-in5u3SH75RoB3VZIX8htiZgw4ELilwvPcHAIQWfwfXv5n0IHDp5hv 1BM3+H1XygMtiE0-JBgacjE9tz33sIh542EmsGs1yg ...

  9. JavaWeb_(Spring框架)Spring中的aop事务

    1.事务相关知识 a)什么是事务:把多条数据库操作捆绑到一起执行,要么都成功,要么都失败: b)事务的原则ACID: i.原子性:事务包含的所有操作,要么全部成功,要么全部失败回滚,成功全部应用到数据 ...

  10. Java排序之归并排序

    Java排序之归并排序 1. 简介 归并排序的算法是将多个有序数据表合并成一个有序数据表.如果参与合并的只有两个有序表,则成为二路合并.对于一个原始的待排序数列,往往可以通过分割的方法来归结为多路合并 ...