寻找hive视图
如何hive视图
1.mysql数据库
[centos@s201 ~]$ mysql -uroot -proot mysql> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| azkaban |
| big12 |
| hive |
| mysql |
| performance_schema |
+--------------------+
6 rows in set (0.05 sec)
2.找hive库
show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| azkaban |
| big12 |
| hive |
| mysql |
| performance_schema |
+--------------------+ mysql> use hive;
3.观表
show tables;
+---------------------------+
| Tables_in_hive |
+---------------------------+
| AUX_TABLE |
| BUCKETING_COLS |
| CDS |
| COLUMNS_V2 |
| COMPACTION_QUEUE |
| COMPLETED_COMPACTIONS |
| COMPLETED_TXN_COMPONENTS |
| DATABASE_PARAMS |
| DBS |
| DB_PRIVS |
| DELEGATION_TOKENS |
| FUNCS |
| FUNC_RU |
| GLOBAL_PRIVS |
| HIVE_LOCKS |
| IDXS |
| INDEX_PARAMS |
| KEY_CONSTRAINTS |
| MASTER_KEYS |
| NEXT_COMPACTION_QUEUE_ID |
| NEXT_LOCK_ID |
| NEXT_TXN_ID |
| NOTIFICATION_LOG |
| NOTIFICATION_SEQUENCE |
| NUCLEUS_TABLES |
| PARTITIONS |
| PARTITION_EVENTS |
| PARTITION_KEYS |
| PARTITION_KEY_VALS |
| PARTITION_PARAMS |
| PART_COL_PRIVS |
| PART_COL_STATS |
| PART_PRIVS |
| ROLES |
| ROLE_MAP |
| SDS |
| SD_PARAMS |
| SEQUENCE_TABLE |
| SERDES |
| SERDE_PARAMS |
| SKEWED_COL_NAMES |
| SKEWED_COL_VALUE_LOC_MAP |
| SKEWED_STRING_LIST |
| SKEWED_STRING_LIST_VALUES |
| SKEWED_VALUES |
| SORT_COLS |
| TABLE_PARAMS |
| TAB_COL_STATS |
| TBLS |
| TBL_COL_PRIVS |
| TBL_PRIVS |
| TXNS |
| TXN_COMPONENTS |
| TYPES |
| TYPE_FIELDS |
| VERSION |
| WRITE_SET |
+---------------------------+
4.TBLS表结构
mysql> desc TBLS;
+--------------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------------------+--------------+------+-----+---------+-------+
| TBL_ID | bigint(20) | NO | PRI | NULL | |
| CREATE_TIME | int(11) | NO | | NULL | |
| DB_ID | bigint(20) | YES | MUL | NULL | |
| LAST_ACCESS_TIME | int(11) | NO | | NULL | |
| OWNER | varchar(767) | YES | | NULL | |
| RETENTION | int(11) | NO | | NULL | |
| SD_ID | bigint(20) | YES | MUL | NULL | |
| TBL_NAME | varchar(128) | YES | MUL | NULL | |
| TBL_TYPE | varchar(128) | YES | | NULL | |
| VIEW_EXPANDED_TEXT | mediumtext | YES | | NULL | |
| VIEW_ORIGINAL_TEXT | mediumtext | YES | | NULL | |
+--------------------+--------------+------+-----+---------+-------+
5.根据TBL_TYPE找到视图
mysql> select * from TBLS where tbl_type='VIRTUAL_VIEW';
+--------+-------------+-------+------------------+--------+-----------+-------+----------+--------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------------------------------------------------------------------------------------------------------+
| TBL_ID | CREATE_TIME | DB_ID | LAST_ACCESS_TIME | OWNER | RETENTION | SD_ID | TBL_NAME | TBL_TYPE | VIEW_EXPANDED_TEXT | VIEW_ORIGINAL_TEXT |
+--------+-------------+-------+------------------+--------+-----------+-------+----------+--------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------------------------------------------------------------------------------------------------------+
| 187 | 1544269997 | 6 | 0 | centos | 0 | 222 | a | VIRTUAL_VIEW | select `a`.`id`, `a`.`tag`, count(*) as `count` from (select `temptags`.`id`, `xx`.`tag` from `big12`.`temptags` lateral view explode(`parsejson`(`temptags`.`json`)) `xx` as `tag`) `a` group by `a`.`id`, `a`.`tag` | select id, tag, count(*) as count from (select id, tag from temptags lateral view explode(parsejson(json)) xx as tag) a group by id, tag |
| 193 | 1544336757 | 6 | 0 | centos | 0 | 229 | a1 | VIRTUAL_VIEW | select `logevent`.`deviceid`, `logevent`.`musicid`, sum(cast(`logevent`.`mark` as int)) as `sum` from `big12`.`logevent` where `logevent`.`musicid` is not null group by `logevent`.`deviceid`, `logevent`.`musicid` | select deviceid, musicid, sum(cast(mark as int)) as sum from logevent where musicId is not null group by deviceid, musicid |
| 194 | 1544336831 | 6 | 0 | centos | 0 | 230 | a2 | VIRTUAL_VIEW | select
`a1`.`deviceid` ,
`a1`.`musicid`,
`a1`.`sum`,
max(`a1`.`sum`)over(partition by `a1`.`deviceid`) as `sum2`
from `big12`.`a1` | select
deviceid ,
musicid,
sum,
max(sum)over(partition by deviceid) as sum2
from a1 |
| 227 | 1550817816 | 6 | 0 | centos | 0 | 262 | zz1 | VIRTUAL_VIEW | select `duowan_parquet`.`id`, `duowan_parquet`.`name`, `duowan_parquet`.`pass`, `duowan_parquet`.`email`, `duowan_parquet`.`nickname` from `big12`.`duowan_parquet` where substring(`duowan_parquet`.`id`,1,1) in (1,2,3,4,5,6,8,9,0) | select * from duowan_parquet where substring(id,1,1) in (1,2,3,4,5,6,8,9,0) |
+--------+-------------+-------+------------------+--------+-----------+-------+----------+--------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------------------------------------------------------------------------------------------------------+
6.查看存储库信息的DBS表
mysql> desc DBS;
+-----------------+---------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------------+---------------+------+-----+---------+-------+
| DB_ID | bigint(20) | NO | PRI | NULL | |
| DESC | varchar(4000) | YES | | NULL | |
| DB_LOCATION_URI | varchar(4000) | NO | | NULL | |
| NAME | varchar(128) | YES | UNI | NULL | |
| OWNER_NAME | varchar(128) | YES | | NULL | |
| OWNER_TYPE | varchar(10) | YES | | NULL | |
+-----------------+---------------+------+-----+---------+-------+
select * from DBS limit 10;
+-------+-----------------------+------------------------------------------------+-------------+------------+------------+
| DB_ID | DESC | DB_LOCATION_URI | NAME | OWNER_NAME | OWNER_TYPE |
+-------+-----------------------+------------------------------------------------+-------------+------------+------------+
| 1 | Default Hive database | hdfs://s201/user/hive/warehouse | default | public | ROLE |
| 6 | NULL | hdfs://s201/user/hive/warehouse/big12.db | big12 | centos | USER |
| 11 | NULL | hdfs://s201/user/hive/warehouse/music164.db | music164 | centos | USER |
| 16 | NULL | hdfs://s201/user/hive/warehouse/big12_umeng.db | big12_umeng | centos | USER |
| 21 | NULL | hdfs://s201/user/hive/warehouse/big12_2.db | big12_2 | centos | USER |
| 26 | NULL | hdfs://s201/user/hive/warehouse/iml.db | iml | centos | USER |
| 31 | NULL | hdfs://s201/user/hive/warehouse/wqbin.db | wqbin | centos | USER |
+-------+-----------------------+------------------------------------------------+-------------+------------+------------+
7.如何删除视图跑路的脚本如下
7.1连接mysql
import pymysql conn = pymysql.connect(host='192.168.154.201', user='root', passwd='root', db='hive')
cur = conn.cursor() # 查询
sql = "select NAME,TBL_NAME from TBLS a join DBS b on a.DB_ID=b.DB_ID "
reCount = cur.execute(sql) # 返回受影响的行数
print(reCount)
data = cur.fetchall() # 返回数据,返回的是tuple类型
print(data) cur.close()
conn.close()
(('big12', 'a'), ('big12', 'a1'), ('big12', 'a2'), ('big12', 'zz1'))
7.2删除hive视图
使用pyhive连接hive删除所有视图
import pymysql
conn = pymysql.connect(host='192.168.154.201', user='root', passwd='root', db='hive')
cur = conn.cursor()
# 查询
sql = "select NAME,TBL_NAME from TBLS a join DBS b on a.DB_ID=b.DB_ID where a.TBL_TYPE='VIRTUAL_VIEW'"
reCount = cur.execute(sql) # 返回受影响的行数
data = cur.fetchall() # 返回数据,返回的是tuple类型
print(data)
cur.close()
conn.close() from pyhive import hive
import thrift
import sasl
import thrift_sasl
conn = hive.Connection(host='192.168.154.201', port=10000, database='big12',auth='NOSASL')
cursor=conn.cursor()
for a,b in data:
cursor.execute("drop view "+a+"."+b)
conn.close()
寻找hive视图的更多相关文章
- Apache Kylin高级部分之使用Hive视图
本章节我们将介绍为什么须要在Kylin创建Cube过程中使用Hive视图.而假设使用Hive视图.能够带来什么优点.解决什么样的问题.以及须要学会怎样使用视图.使用视图有什么限制等等. 1. ...
- Hive视图如何创建、特点及应用场景
Hive视图特点 View是逻辑存在,Hive暂不支持物化视图(1.0.3) View只读,不支持LOAD/INSERT/ALTER.需要改变View定义,可以是用Alter View View内可能 ...
- 【转】Kylin实践之使用Hive视图
http://blog.csdn.net/yu616568/article/details/50548967 为什么需要使用视图 Kylin在使用的过程中使用hive作为cube的输入,但是有些情况下 ...
- Hive 学习之路(六)—— Hive 视图和索引
一.视图 1.1 简介 Hive 中的视图和RDBMS中视图的概念一致,都是一组数据的逻辑表示,本质上就是一条SELECT语句的结果集.视图是纯粹的逻辑对象,没有关联的存储(Hive 3.0.0引入的 ...
- Hive 系列(六)—— Hive 视图和索引
一.视图 1.1 简介 Hive 中的视图和 RDBMS 中视图的概念一致,都是一组数据的逻辑表示,本质上就是一条 SELECT 语句的结果集.视图是纯粹的逻辑对象,没有关联的存储 (Hive 3.0 ...
- 入门大数据---Hive视图和索引
一.视图 1.1 简介 Hive 中的视图和 RDBMS 中视图的概念一致,都是一组数据的逻辑表示,本质上就是一条 SELECT 语句的结果集.视图是纯粹的逻辑对象,没有关联的存储 (Hive 3.0 ...
- hive视图
简化复杂的查询 员工好.姓名.月薪.年薪.在一个emp表中; 部门名称在dept的表中;并未年薪起了一个名字annlsal 查询视图 视图是一个虚表,是不存数据的
- Yii框架怎么寻找对应视图
render()内容; public function render($view,$data=null,$return=false) { if($this->beforeRender($view ...
- 寻找hive数据倾斜路
前言 一直以来我都是从书上.博客上.别人口中听说数据倾斜,自己也从而指导一些解决数据倾斜的方式或者一些容易出现数据倾斜的场景.但是从来没有认真的去发现过,寻求过,研究过. 正文 我打开了hive官网 ...
随机推荐
- [转帖]国内拉取google kubernetes镜像
国内拉取google kubernetes镜像 2019年04月19日 01:19:03 willblog 阅读数 4231 标签: kubernetes 更多 个人分类: kubernetes ...
- PHP数组和对象之间的互换
今天在和前端对接接口的时候,从后台返回数据给前端的时候出现如下JSON格式数据 "goods": [ { "id": "dEQ144800584Lx& ...
- redis 学习(17) -- RDB
redis -- RDB 什么是 RDB 经过RDB之后,redis会将内存中的数据创建一份快照到硬盘中,称为RDB文件(二进制) 当redis重新启动时,会加载硬盘中的RDB文件,加载到内存中完成数 ...
- jquery选择器 模糊查找
$("input[class^='combo-text']").attr("readonly", "readonly"); 查找包含‘com ...
- mysq练习
表名和字段 –1.学生表Student(s_id,s_name,s_birth,s_sex) --学生编号,学生姓名, 出生年月,学生性别–2.课程表Course(c_id,c_name,t_id) ...
- Eclipse 快捷键、文档注释、多行注释的快捷键
关于快捷键 Eclipse 的很多操作都提供了快捷键功能,我们可以通过键盘就能很好的控制 Eclipse 各个功能: 一.多行注释快捷键 1.选中你要加注释的区域,用ctrl+shift+C 或者ct ...
- python 访问权限
访问权限 权限: 公有的:类中的普通属性和方法,默认都是公有的,可以在类的内部.外部.子类中使用 私有的:定义是在前面加两个'_',只能在本类的内部使用,不能再外部及子类中使用 示例: class P ...
- 云端js动态效果
效果图: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3 ...
- day09 并发编程
一. 目录 1.进程的概念和两种创建方式 2.多进程爬虫 3.守护进程 4.进程队列 5.进程队列简单应用(实现数据共享) 6.线程的两种创建方式 7.线程和进程的效率对比 8.线程共享统一进程的数据 ...
- hourglassnet网络解析
hourglassnet中文名称是沙漏网络,起初用于人体关键点检测,代码,https://github.com/bearpaw/pytorch-pose 后来被广泛的应用到其他领域,我知道的有双目深度 ...