如何hive视图

1.mysql数据库

[centos@s201 ~]$ mysql -uroot -proot

mysql> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| azkaban |
| big12 |
| hive |
| mysql |
| performance_schema |
+--------------------+
6 rows in set (0.05 sec)

2.找hive库

 show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| azkaban |
| big12 |
| hive |
| mysql |
| performance_schema |
+--------------------+ mysql> use hive;

3.观表

show tables;
+---------------------------+
| Tables_in_hive |
+---------------------------+
| AUX_TABLE |
| BUCKETING_COLS |
| CDS |
| COLUMNS_V2 |
| COMPACTION_QUEUE |
| COMPLETED_COMPACTIONS |
| COMPLETED_TXN_COMPONENTS |
| DATABASE_PARAMS |
| DBS |
| DB_PRIVS |
| DELEGATION_TOKENS |
| FUNCS |
| FUNC_RU |
| GLOBAL_PRIVS |
| HIVE_LOCKS |
| IDXS |
| INDEX_PARAMS |
| KEY_CONSTRAINTS |
| MASTER_KEYS |
| NEXT_COMPACTION_QUEUE_ID |
| NEXT_LOCK_ID |
| NEXT_TXN_ID |
| NOTIFICATION_LOG |
| NOTIFICATION_SEQUENCE |
| NUCLEUS_TABLES |
| PARTITIONS |
| PARTITION_EVENTS |
| PARTITION_KEYS |
| PARTITION_KEY_VALS |
| PARTITION_PARAMS |
| PART_COL_PRIVS |
| PART_COL_STATS |
| PART_PRIVS |
| ROLES |
| ROLE_MAP |
| SDS |
| SD_PARAMS |
| SEQUENCE_TABLE |
| SERDES |
| SERDE_PARAMS |
| SKEWED_COL_NAMES |
| SKEWED_COL_VALUE_LOC_MAP |
| SKEWED_STRING_LIST |
| SKEWED_STRING_LIST_VALUES |
| SKEWED_VALUES |
| SORT_COLS |
| TABLE_PARAMS |
| TAB_COL_STATS |
| TBLS |
| TBL_COL_PRIVS |
| TBL_PRIVS |
| TXNS |
| TXN_COMPONENTS |
| TYPES |
| TYPE_FIELDS |
| VERSION |
| WRITE_SET |
+---------------------------+

4.TBLS表结构

mysql> desc TBLS;
+--------------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------------------+--------------+------+-----+---------+-------+
| TBL_ID | bigint(20) | NO | PRI | NULL | |
| CREATE_TIME | int(11) | NO | | NULL | |
| DB_ID | bigint(20) | YES | MUL | NULL | |
| LAST_ACCESS_TIME | int(11) | NO | | NULL | |
| OWNER | varchar(767) | YES | | NULL | |
| RETENTION | int(11) | NO | | NULL | |
| SD_ID | bigint(20) | YES | MUL | NULL | |
| TBL_NAME | varchar(128) | YES | MUL | NULL | |
| TBL_TYPE | varchar(128) | YES | | NULL | |
| VIEW_EXPANDED_TEXT | mediumtext | YES | | NULL | |
| VIEW_ORIGINAL_TEXT | mediumtext | YES | | NULL | |
+--------------------+--------------+------+-----+---------+-------+

5.根据TBL_TYPE找到视图

mysql> select * from TBLS where tbl_type='VIRTUAL_VIEW';
+--------+-------------+-------+------------------+--------+-----------+-------+----------+--------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------------------------------------------------------------------------------------------------------+
| TBL_ID | CREATE_TIME | DB_ID | LAST_ACCESS_TIME | OWNER | RETENTION | SD_ID | TBL_NAME | TBL_TYPE | VIEW_EXPANDED_TEXT | VIEW_ORIGINAL_TEXT |
+--------+-------------+-------+------------------+--------+-----------+-------+----------+--------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------------------------------------------------------------------------------------------------------+
| 187 | 1544269997 | 6 | 0 | centos | 0 | 222 | a | VIRTUAL_VIEW | select `a`.`id`, `a`.`tag`, count(*) as `count` from (select `temptags`.`id`, `xx`.`tag` from `big12`.`temptags` lateral view explode(`parsejson`(`temptags`.`json`)) `xx` as `tag`) `a` group by `a`.`id`, `a`.`tag` | select id, tag, count(*) as count from (select id, tag from temptags lateral view explode(parsejson(json)) xx as tag) a group by id, tag |
| 193 | 1544336757 | 6 | 0 | centos | 0 | 229 | a1 | VIRTUAL_VIEW | select `logevent`.`deviceid`, `logevent`.`musicid`, sum(cast(`logevent`.`mark` as int)) as `sum` from `big12`.`logevent` where `logevent`.`musicid` is not null group by `logevent`.`deviceid`, `logevent`.`musicid` | select deviceid, musicid, sum(cast(mark as int)) as sum from logevent where musicId is not null group by deviceid, musicid |
| 194 | 1544336831 | 6 | 0 | centos | 0 | 230 | a2 | VIRTUAL_VIEW | select
`a1`.`deviceid` ,
`a1`.`musicid`,
`a1`.`sum`,
max(`a1`.`sum`)over(partition by `a1`.`deviceid`) as `sum2`
from `big12`.`a1` | select
deviceid ,
musicid,
sum,
max(sum)over(partition by deviceid) as sum2
from a1 |
| 227 | 1550817816 | 6 | 0 | centos | 0 | 262 | zz1 | VIRTUAL_VIEW | select `duowan_parquet`.`id`, `duowan_parquet`.`name`, `duowan_parquet`.`pass`, `duowan_parquet`.`email`, `duowan_parquet`.`nickname` from `big12`.`duowan_parquet` where substring(`duowan_parquet`.`id`,1,1) in (1,2,3,4,5,6,8,9,0) | select * from duowan_parquet where substring(id,1,1) in (1,2,3,4,5,6,8,9,0) |
+--------+-------------+-------+------------------+--------+-----------+-------+----------+--------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-------------------------------------------------------------------------------------------------------------------------------------------+

6.查看存储库信息的DBS表

mysql> desc DBS;
+-----------------+---------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------------+---------------+------+-----+---------+-------+
| DB_ID | bigint(20) | NO | PRI | NULL | |
| DESC | varchar(4000) | YES | | NULL | |
| DB_LOCATION_URI | varchar(4000) | NO | | NULL | |
| NAME | varchar(128) | YES | UNI | NULL | |
| OWNER_NAME | varchar(128) | YES | | NULL | |
| OWNER_TYPE | varchar(10) | YES | | NULL | |
+-----------------+---------------+------+-----+---------+-------+
 select * from  DBS limit 10;
+-------+-----------------------+------------------------------------------------+-------------+------------+------------+
| DB_ID | DESC | DB_LOCATION_URI | NAME | OWNER_NAME | OWNER_TYPE |
+-------+-----------------------+------------------------------------------------+-------------+------------+------------+
| 1 | Default Hive database | hdfs://s201/user/hive/warehouse | default | public | ROLE |
| 6 | NULL | hdfs://s201/user/hive/warehouse/big12.db | big12 | centos | USER |
| 11 | NULL | hdfs://s201/user/hive/warehouse/music164.db | music164 | centos | USER |
| 16 | NULL | hdfs://s201/user/hive/warehouse/big12_umeng.db | big12_umeng | centos | USER |
| 21 | NULL | hdfs://s201/user/hive/warehouse/big12_2.db | big12_2 | centos | USER |
| 26 | NULL | hdfs://s201/user/hive/warehouse/iml.db | iml | centos | USER |
| 31 | NULL | hdfs://s201/user/hive/warehouse/wqbin.db | wqbin | centos | USER |
+-------+-----------------------+------------------------------------------------+-------------+------------+------------+

7.如何删除视图跑路的脚本如下

7.1连接mysql

import pymysql

conn = pymysql.connect(host='192.168.154.201', user='root', passwd='root', db='hive')
cur = conn.cursor() # 查询
sql = "select NAME,TBL_NAME from TBLS a join DBS b on a.DB_ID=b.DB_ID "
reCount = cur.execute(sql) # 返回受影响的行数
print(reCount)
data = cur.fetchall() # 返回数据,返回的是tuple类型
print(data) cur.close()
conn.close()

(('big12', 'a'), ('big12', 'a1'), ('big12', 'a2'), ('big12', 'zz1'))

7.2删除hive视图

使用pyhive连接hive删除所有视图

import pymysql
conn = pymysql.connect(host='192.168.154.201', user='root', passwd='root', db='hive')
cur = conn.cursor()
# 查询
sql = "select NAME,TBL_NAME from TBLS a join DBS b on a.DB_ID=b.DB_ID where a.TBL_TYPE='VIRTUAL_VIEW'"
reCount = cur.execute(sql) # 返回受影响的行数
data = cur.fetchall() # 返回数据,返回的是tuple类型
print(data)
cur.close()
conn.close() from pyhive import hive
import thrift
import sasl
import thrift_sasl
conn = hive.Connection(host='192.168.154.201', port=10000, database='big12',auth='NOSASL')
cursor=conn.cursor()
for a,b in data:
cursor.execute("drop view "+a+"."+b)
conn.close()

寻找hive视图的更多相关文章

  1. Apache Kylin高级部分之使用Hive视图

    本章节我们将介绍为什么须要在Kylin创建Cube过程中使用Hive视图.而假设使用Hive视图.能够带来什么优点.解决什么样的问题.以及须要学会怎样使用视图.使用视图有什么限制等等. 1.      ...

  2. Hive视图如何创建、特点及应用场景

    Hive视图特点 View是逻辑存在,Hive暂不支持物化视图(1.0.3) View只读,不支持LOAD/INSERT/ALTER.需要改变View定义,可以是用Alter View View内可能 ...

  3. 【转】Kylin实践之使用Hive视图

    http://blog.csdn.net/yu616568/article/details/50548967 为什么需要使用视图 Kylin在使用的过程中使用hive作为cube的输入,但是有些情况下 ...

  4. Hive 学习之路(六)—— Hive 视图和索引

    一.视图 1.1 简介 Hive 中的视图和RDBMS中视图的概念一致,都是一组数据的逻辑表示,本质上就是一条SELECT语句的结果集.视图是纯粹的逻辑对象,没有关联的存储(Hive 3.0.0引入的 ...

  5. Hive 系列(六)—— Hive 视图和索引

    一.视图 1.1 简介 Hive 中的视图和 RDBMS 中视图的概念一致,都是一组数据的逻辑表示,本质上就是一条 SELECT 语句的结果集.视图是纯粹的逻辑对象,没有关联的存储 (Hive 3.0 ...

  6. 入门大数据---Hive视图和索引

    一.视图 1.1 简介 Hive 中的视图和 RDBMS 中视图的概念一致,都是一组数据的逻辑表示,本质上就是一条 SELECT 语句的结果集.视图是纯粹的逻辑对象,没有关联的存储 (Hive 3.0 ...

  7. hive视图

    简化复杂的查询 员工好.姓名.月薪.年薪.在一个emp表中; 部门名称在dept的表中;并未年薪起了一个名字annlsal 查询视图 视图是一个虚表,是不存数据的

  8. Yii框架怎么寻找对应视图

    render()内容; public function render($view,$data=null,$return=false) { if($this->beforeRender($view ...

  9. 寻找hive数据倾斜路

    前言 一直以来我都是从书上.博客上.别人口中听说数据倾斜,自己也从而指导一些解决数据倾斜的方式或者一些容易出现数据倾斜的场景.但是从来没有认真的去发现过,寻求过,研究过. 正文 我打开了hive官网  ...

随机推荐

  1. sql普通语句

    select DISTINCT t_id from nrc_newsDISTINCT不会输出相同的值select top 5 * from nrc_news;检索前五行select * from nr ...

  2. poj3122 Pie (二分)

    题目链接:https://vjudge.net/problem/POJ-3122 题意:有n块饼,m+1个人,将饼均分成m+1块,求每块最大的大小. 思路:水二分,显然每块的大小与可以给多少人吃具有单 ...

  3. SQL SERVER DATEDIFF函数

    定义: DATEDIFF() 函数返回两个日期之间的时间间隔. 语法: DATEDIFF(datepart,startdate,enddate) 参数: ①datepart 参数可以是下列的值: da ...

  4. C++中的bool类型

    1.C++中的布尔类型 (1)C++在C语言的基础类型系统之上增加了bool: 1)C语言中,没有bool类型存在,往往都是用整型代替bool类型,常用0表示假,1表示真: 2)bool本来就有这样的 ...

  5. PostgreSQL查看表、表索引、视图、表结构以及参数设置

    -- 表索引select * from pg_indexes where tablename='person_wechat_label';select * from pg_statio_all_ind ...

  6. docker CMD 和 ENTRYPOINT 区别

    昨天用Dockerfile来启动mongodb的集群,启动参数--replSet死活没执行,最后就决定研究一哈cmd和entrypoint.但是上网看了一些资料个人觉得讲的不好,还是没有说出根本的东西 ...

  7. List与Set区别

    List: 元素有序放入,元素可重复 Set: 元素无序保存,元素不可重复(通过==判断,非基本类型判断的是引用地址),因为set是无序的,故只能通过迭代器循环.ps:说是无序,但是其实set中的元素 ...

  8. java实现spark常用算子之Reduce

    import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.a ...

  9. vue进阶:vue-router(vue路由)的安装与基本使用

    vue路由安装与基本使用 vue嵌套路由 vue动态路由(路由组件传参) vue路由重定向和一些其他的路由相关 官方手册:https://router.vuejs.org/zh/ 一.vue路由安装与 ...

  10. linux下内存检测工具的使用和对比

    linux背后隐藏着各种丰富的工具,学会这些工具,让这些工具更好地服务于我们的项目开发,不仅可以提高工作的效率,而且可以增强个人技术力. 参考:http://blog.chinaunix.net/ui ...