考虑一个子问题。给定无向图 $G$,如何判断能否将 $G$ 的点集分成两部分 $S$、$T$ 使得 $S$ 和 $T$ 导出的子图都是完全图?

这个问题把我难住了。解法是考虑 $G$ 的补图 $G'$,$G$ 中的完全子图对应于 $G'$ 中的独立集。

$G'$ 的点集能划分为两个独立集等价于 $G'$ 是二分图。

回到原问题。对于补图 $G'$ 的每个连通分量,二分图的两个点集是确定的。于是我们可以通过 DP 算出 $S$ 中可能有几个点。

官方题解:

code
 
int main() {
int n, m;
scan(n, m);
vv a(n, vi(n));
rep (m) {
int x, y;
scan(x, y);
--x, --y;
a[x][y] = a[y][x] = 1;
}
vv g(n);
rng (i, 0, n) {
rng (j, 0, i) {
if (!a[i][j]) {
g[i].pb(j);
g[j].pb(i);
}
}
}
vi vis(n);
int c1, c2;
vpii num;
function dfs = [&](int u) {
FOR (v, g[u]) {
if (!vis[v]) {
vis[v] = -vis[u];
if (vis[v] == 1) {
++c1;
} else {
++c2;
}
dfs(v);
} else if (vis[v] != -vis[u]) {
println(-1);
exit(0);
}
}
};
rng (i, 0, n) {
if (!vis[i]) {
vis[i] = 1;
c1 = 1, c2 = 0;
dfs(i);
num.eb(c1, c2);
}
}
vi dp(n + 1);
dp[0] = 1;
int limit = 0;
FOR (p, num) {
down (i, limit, 0) {
if (dp[i]) {
dp[i] = 0; // 这里容易错。少了这一句就错了。
dp[i + p.first] = 1;
dp[i + p.second] = 1;
}
}
limit += max(p.first, p.second);
}
int ans = INT_MAX;
rng (i, 0, n + 1) {
if (dp[i]) {
chkmin(ans, i * (i - 1) / 2 + (n - i) * (n - i - 1) / 2);
}
}
println(ans);
return 0;
}

以上实现在 DP 部分采用了滚动数组的技巧,要注意及时清空上一轮的状态。

ARC099E. Independence的更多相关文章

  1. 控制反转(IOC: Inverse Of Control) & 依赖注入(DI: Independence Inject)

    举例:在每天的日常生活中,我们离不开水,电,气.在城市化之前,我们每家每户需要自己去搞定这些东西:自己挖水井取水,自己点煤油灯照明,自己上山砍柴做饭.而城市化之后,人们从这些琐事中解放了出来,城市中出 ...

  2. Independence独立

    Independence refers to the degree to which each test case stands alone. That is, does the success or ...

  3. [PGM] Bayes Network and Conditional Independence

    2 - 1 - Semantics & Factorization 2 - 2 - Reasoning Patterns 2 - 3 - Flow of Probabilistic Influ ...

  4. AtCoder Regular Contest 099 (ARC099) E - Independence 二分图

    原文链接https://www.cnblogs.com/zhouzhendong/p/9224878.html 题目传送门 - ARC099 E - Independence 题意 给定一个有 $n$ ...

  5. [Bayes] prod: M-H: Independence Sampler for Posterior Sampling

    M-H是Metropolis抽样方法的扩展,扩展后可以支持不对称的提议分布. 对于M-H而言,根据候选分布g的不同选择,衍生出了集中不同的变种: (1)Metropolis抽样方法 (2)随机游动Me ...

  6. GYM 101064 2016 USP Try-outs G. The Declaration of Independence 主席树

    G. The Declaration of Independence time limit per test 1 second memory limit per test 256 megabytes ...

  7. C# 控制反转(IOC: Inverse Of Control) & 依赖注入(DI: Independence Inject)

    举例:在每天的日常生活中,我们离不开水,电,气.在城市化之前,我们每家每户需要自己去搞定这些东西:自己挖水井取水,自己点煤油灯照明,自己上山砍柴做饭.而城市化之后,人们从这些琐事中解放了出来,城市中出 ...

  8. 【线性代数】3-5:独立性,基和维度(Independence,Basis and Dimension)

    title: [线性代数]3-5:独立性,基和维度(Independence,Basis and Dimension) categories: Mathematic Linear Algebra ke ...

  9. 【读书笔记】:MIT线性代数(4):Independence, Basis and Dimension

    Independence: The columns of A are independent when the nullspace N (A) contains only the zero vecto ...

随机推荐

  1. HGOI 20191031am 题解

    Problem A Divisors 给出$m$个不同的正整数$a_i$,设数论函数 ​​​$f(k) = \sum\limits_{i = 1}^{n} [(\sum\limits_{j = 1}^ ...

  2. 2016 Multi-University Training Contest 1 部分题解

    第一场多校,出了一题,,没有挂零还算欣慰. 1001,求最小生成树和,确定了最小生成树后任意两点间的距离的最小数学期望.当时就有点矛盾,为什么是求最小的数学期望以及为什么题目给了每条边都不相等的条件. ...

  3. Leetcode题目160.相交链表(简单)

    题目描述 编写一个程序,找到两个单链表相交的起始节点. 如下面的两个链表: 在节点 c1 开始相交. 输入:intersectVal = 8, listA = [4,1,8,4,5], listB = ...

  4. VMware Workstation 与 Device/Credential Guard 不兼容

    之前在本机搭建Docker for Windows的时候,启用了win10自带的虚拟Hyper-V,但是win10的虚拟与VMware Workstation的虚拟有冲突,运行VMware Works ...

  5. SilverFish

    noHero123/silverfish https://github.com/noHero123/silverfish/blob/master/HrtBddy/instructions.txt Ho ...

  6. centos-Hadoop集群 安装同步时间

    1.安装 yum search cache ntpdate xcall.sh "yum install -y ntpdate.x86_64" 2.同步 xcall.sh " ...

  7. 前端知识点回顾——HTML,CSS篇

    前端知识点回顾篇--是我当初刚转行为了面试而将自己学过的前端知识整理成的一份笔记,个人目的性很强,仅供参考. doctype 有什么用 doctype是一种标准通用标记语言的文档类型声明,目的是告诉标 ...

  8. visible,invisible和GONE的区别

    在Android开发中,大部分控件都有visibility这个属性,其属性有3个分别为“visible ”.“invisible”.“gone”.主要用来设置控制控件的显示和隐藏.有些人可能会疑惑In ...

  9. MySql锁和事务隔离级别

    在讲mysql事物隔离级别之前,我们先简单说说mysql的锁和事务. 一:数据库锁 因为数据库要解决并发控制问题.在同一时刻,可能会有多个客户端对同一张表进行操作,比如有的在读取该行数据,其他的尝试去 ...

  10. Cgroup与LXC简介

    原文地址: https://blog.51cto.com/speakingbaicai/1359825 一.Docker.LXC.Cgroup的结构关系 根据Docker布道师Jerome Petaz ...