并不对劲的CF480E:Parking Lot
题目大意
有一个\(n\times m\)的网格,每个位置是黑色或者白色。\(k\)个操作,每个操作是将一个白格子染黑,操作后输出当前最大的白色正方形的边长。\(n,m,k\leq 2\times 10^3\)
题解
发现在每次操作是把白格子变黑,会使答案变小。维护“变小的最大值”听上去不太舒服。考虑把操作全都反过来,变成把黑格子染白。
这样每次操作之后,如果答案变大了,那么新的答案正方形一定包含在被操作的格子。
考虑对每个点记它左边最左的白格子和右边最右的白格子,操作时暴力更新与被操作点同行的点。
答案就是想找连续的一段与被操作的点在同一列,“段的长度”与“最左的右边界-最右的左边界”的最小值尽可能大。
发现可以判断答案是否大于一个数\(x\):当这一列上存在一个点,满足该点到从该点往上数第\(x\)个点满足“最左的右边界-最右的左边界”不少于\(x\),\(x\)就可以;反之就不可以。
可以用线段树或单调队列维护区间最左右边界和最右左边界。
这题知道判断解是否合法的方法后也不用二分,因为在处理过后答案就是不降的,而且不会超过\(min(n,m)\),而判断能否使答案增加1需要\(\Theta(n)\)或\(\Theta(n\space log\space n)\)的时间复杂度,所以可以每次暴力判断能否使答案增加。
总时间复杂度\(\Theta(n\times m+k\times m+k\times n)\)。
代码
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<iomanip>
#include<iostream>
#include<map>
#include<queue>
#include<stack>
#include<vector>
#define LL long long
#define rep(i,x,y) for(int i=(x);i<=(y);++i)
#define dwn(i,x,y) for(int i=(x);i>=(y);--i)
#define view(u,k) for(int k=fir[u];~k;k=nxt[k])
#define maxn 2007
using namespace std;
int read()
{
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)&&ch!='-')ch=getchar();
if(ch=='-')f=-1,ch=getchar();
while(isdigit(ch))x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return x*f;
}
void write(int x)
{
char ch[20];int f=0;
if(!x){putchar('0'),putchar('\n');return;}
if(x<0)putchar('-'),x=-x;
while(x)ch[++f]=x%10+'0',x/=10;
while(f)putchar(ch[f--]);
putchar('\n');
}
int qx[maxn],qy[maxn],q[maxn],hd,tl;
int col[maxn][maxn],ans,lmx[maxn][maxn],rmx[maxn][maxn],n,m,k,res[maxn],tmp[maxn],dp[maxn][maxn];
char s[maxn];
int jud(int yy)
{
hd=1,tl=0;
rep(i,1,n)
{
while(hd<=tl&&q[hd]<i-(ans+1)+1)hd++;
while(hd<=tl&&lmx[q[tl]][yy]<=lmx[i][yy])tl--;
q[++tl]=i;
if(i<ans+1)continue;
tmp[i]=yy-lmx[q[hd]][yy]+1;
}
hd=1,tl=0;
rep(i,1,n)
{
while(hd<=tl&&q[hd]<i-(ans+1)+1)hd++;
while(hd<=tl&&rmx[q[tl]][yy]>=rmx[i][yy])tl--;
q[++tl]=i;
if(i<ans+1)continue;
tmp[i]+=rmx[q[hd]][yy]-yy;
}
rep(i,ans+1,n)if(tmp[i]>=ans+1)return 1;
return 0;
}
int main()
{
n=read(),m=read(),k=read();
rep(i,1,n)
{
scanf("%s",s+1);
rep(j,1,m)if(s[j]!='.')col[i][j]=1;
}
rep(i,1,k)qx[i]=read(),qy[i]=read(),col[qx[i]][qy[i]]=1;
rep(i,1,n)
{
rep(j,1,m)
{
if(col[i][j]){lmx[i][j]=j+1;continue;}
dp[i][j]=min(min(dp[i-1][j],dp[i][j-1]),dp[i-1][j-1])+1;
ans=max(dp[i][j],ans);
if(j==1||col[i][j-1])lmx[i][j]=j;
else lmx[i][j]=lmx[i][j-1];
}
dwn(j,m,1)
{
if(col[i][j]){rmx[i][j]=j-1;continue;}
if(j==m||col[i][j+1])rmx[i][j]=j;
else rmx[i][j]=rmx[i][j+1];
}
}
dwn(i,k,1)
{
res[i]=ans;
col[qx[i]][qy[i]]=0;
int nl=qy[i],nr=qy[i];
while(nl-1>=1&&!col[qx[i]][nl-1])nl--;
while(nr+1<=m&&!col[qx[i]][nr+1])nr++;
rep(j,nl,nr)lmx[qx[i]][j]=nl,rmx[qx[i]][j]=nr;
while(jud(qy[i]))ans++;
}
rep(i,1,k)write(res[i]);
return (0-0);
}
并不对劲的CF480E:Parking Lot的更多相关文章
- [CF480E]Parking Lot
题意:给一个$n\times m$的网格,初始时有些地方不能选,给$k$个询问$(x,y)$,每次令$(x,y)$不能选,然后询问最大子正方形的边长 如果按原题来做,禁止选一个点对答案的影响是极其鬼畜 ...
- CF480E Parking Lot(单调队列+dp然鹅并不是优化)
(全英文题面所以直接放化简题意) 题意:在一个二维平面内,初始有一些点,然后每个时间点加入一些点,对每个时间点求平面内最大的无障碍正方形 (这次的题目是真的神仙啊...) 首先,考虑暴力,如果对每一个 ...
- CF480E Parking Lot(two-pointers + 单调队列优化)
题面 动态加障碍物,同时查询最大子正方形. n,m≤2000n,m\leq2000n,m≤2000 题解 加障碍不好做,直接离线后反着做,每次就是清除一个障碍物. 显然倒着做答案是递增的,而且答案的值 ...
- [LintCode] Parking Lot 停车场问题
Design a parking lot. see CC150 OO Design for details.1) n levels, each level has m rows of spots an ...
- [CareerCup] 8.4 Parking Lot 停车场问题
8.4 Design a parking lot using object-oriented principles. LintCode上的原题,请参见我的另一篇博客Parking Lot 停车场问题. ...
- Codeforces 46D Parking Lot
传送门 D. Parking Lot time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- Codeforces Round #135 (Div. 2) E. Parking Lot 线段数区间合并
E. Parking Lot time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
- Amazon Interview Question: Design an OO parking lot
Design an OO parking lot. What classes and functions will it have. It should say, full, empty and al ...
- HDOJ(HDU) 1673 Optimal Parking
Problem Description When shopping on Long Street, Michael usually parks his car at some random locat ...
随机推荐
- JAVA之工作线程数究竟要设置多少
一.需求缘起 Web-Server通常有个配置,最大工作线程数,后端服务一般也有个配置,工作线程池的线程数量,这个线程数的配置不同的业务架构师有不同的经验值,有些业务设置为CPU核数的2倍,有些业务设 ...
- centos6.9实现双网卡绑定
1.创建bond0文件 # vi /etc/sysconfig/network-scripts/ifcfg-bond0 DEVICE=bond0 NM_CONTROLLED=no #是否由networ ...
- 2018-2019-2 20175227张雪莹《Java程序设计》实验四 《Android程序设计》
2018-2019-2 20175227张雪莹<Java程序设计> 实验四 <Android程序设计> 实验报告封面 课程:Java程序设计 班级:1752班 姓名:张雪莹 学 ...
- 解决spring-boot 各版本包冲突兼容的方法
思路 在微服务盛行的当下,spring boot 流行程度已经家喻户晓.但同时,随着spring boot 快速迭代,出现了很多版本,比如当前已经推出了2.2.x-SNAPSHOT/ , ...
- python 格式化输出用户名/密码
格式化输出用户名/密码 内容来自网络 def get_account(num): accounts = [] for index in range(1, num+1): accounts.append ...
- PHP将多个文件中的内容合并为新的文件
function test() { $hostdir= iconv("utf-8","gbk","C:\Users\原万里\Desktop\日常笔记& ...
- linux下如何映射宿主机中的文件到容器中?
答:在启动容器时使用-v指定宿主机目录和要映射到的容器内部目录,语法如下: docker run -it -v <host_dir>:<container_dir> <c ...
- MySQL(逻辑分层,存储引擎,sql优化,索引优化以及底层实现(B+Tree))
一 , 逻辑分层 连接层:连接与线程处理,这一层并不是MySQL独有,一般的基于C/S架构的都有类似组件,比如连接处理.授权认证.安全等. 服务层:包括缓存查询.解析器.优化器,这一部分是MySQL核 ...
- Java之加密算法
加密算法主要分为对称加密.非对称加密.Hash加密. 一.何为对称加密? 对称加密是指对称密码编码技术,它的特点是文件加密和解密使用相同的密钥加密. 对称机密的密钥一般小于256bit.因为就密钥而言 ...
- linux简单命令8---软件包安装
1:使用yum安装,它不能包查询和包校验.它安装的是RPM格式文件.没有yum文件 ---------------------------------------------------------- ...