题目大意

有一个\(n\times m\)的网格,每个位置是黑色或者白色。\(k\)个操作,每个操作是将一个白格子染黑,操作后输出当前最大的白色正方形的边长。\(n,m,k\leq 2\times 10^3\)

题解

发现在每次操作是把白格子变黑,会使答案变小。维护“变小的最大值”听上去不太舒服。考虑把操作全都反过来,变成把黑格子染白。

这样每次操作之后,如果答案变大了,那么新的答案正方形一定包含在被操作的格子。

考虑对每个点记它左边最左的白格子和右边最右的白格子,操作时暴力更新与被操作点同行的点。

答案就是想找连续的一段与被操作的点在同一列,“段的长度”与“最左的右边界-最右的左边界”的最小值尽可能大。

发现可以判断答案是否大于一个数\(x\):当这一列上存在一个点,满足该点到从该点往上数第\(x\)个点满足“最左的右边界-最右的左边界”不少于\(x\),\(x\)就可以;反之就不可以。

可以用线段树或单调队列维护区间最左右边界和最右左边界。

这题知道判断解是否合法的方法后也不用二分,因为在处理过后答案就是不降的,而且不会超过\(min(n,m)\),而判断能否使答案增加1需要\(\Theta(n)\)或\(\Theta(n\space log\space n)\)的时间复杂度,所以可以每次暴力判断能否使答案增加。

总时间复杂度\(\Theta(n\times m+k\times m+k\times n)\)。

代码

#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<iomanip>
#include<iostream>
#include<map>
#include<queue>
#include<stack>
#include<vector>
#define LL long long
#define rep(i,x,y) for(int i=(x);i<=(y);++i)
#define dwn(i,x,y) for(int i=(x);i>=(y);--i)
#define view(u,k) for(int k=fir[u];~k;k=nxt[k])
#define maxn 2007
using namespace std;
int read()
{
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)&&ch!='-')ch=getchar();
if(ch=='-')f=-1,ch=getchar();
while(isdigit(ch))x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return x*f;
}
void write(int x)
{
char ch[20];int f=0;
if(!x){putchar('0'),putchar('\n');return;}
if(x<0)putchar('-'),x=-x;
while(x)ch[++f]=x%10+'0',x/=10;
while(f)putchar(ch[f--]);
putchar('\n');
}
int qx[maxn],qy[maxn],q[maxn],hd,tl;
int col[maxn][maxn],ans,lmx[maxn][maxn],rmx[maxn][maxn],n,m,k,res[maxn],tmp[maxn],dp[maxn][maxn];
char s[maxn];
int jud(int yy)
{
hd=1,tl=0;
rep(i,1,n)
{
while(hd<=tl&&q[hd]<i-(ans+1)+1)hd++;
while(hd<=tl&&lmx[q[tl]][yy]<=lmx[i][yy])tl--;
q[++tl]=i;
if(i<ans+1)continue;
tmp[i]=yy-lmx[q[hd]][yy]+1;
}
hd=1,tl=0;
rep(i,1,n)
{
while(hd<=tl&&q[hd]<i-(ans+1)+1)hd++;
while(hd<=tl&&rmx[q[tl]][yy]>=rmx[i][yy])tl--;
q[++tl]=i;
if(i<ans+1)continue;
tmp[i]+=rmx[q[hd]][yy]-yy;
}
rep(i,ans+1,n)if(tmp[i]>=ans+1)return 1;
return 0;
}
int main()
{
n=read(),m=read(),k=read();
rep(i,1,n)
{
scanf("%s",s+1);
rep(j,1,m)if(s[j]!='.')col[i][j]=1;
}
rep(i,1,k)qx[i]=read(),qy[i]=read(),col[qx[i]][qy[i]]=1;
rep(i,1,n)
{
rep(j,1,m)
{
if(col[i][j]){lmx[i][j]=j+1;continue;}
dp[i][j]=min(min(dp[i-1][j],dp[i][j-1]),dp[i-1][j-1])+1;
ans=max(dp[i][j],ans);
if(j==1||col[i][j-1])lmx[i][j]=j;
else lmx[i][j]=lmx[i][j-1];
}
dwn(j,m,1)
{
if(col[i][j]){rmx[i][j]=j-1;continue;}
if(j==m||col[i][j+1])rmx[i][j]=j;
else rmx[i][j]=rmx[i][j+1];
}
}
dwn(i,k,1)
{
res[i]=ans;
col[qx[i]][qy[i]]=0;
int nl=qy[i],nr=qy[i];
while(nl-1>=1&&!col[qx[i]][nl-1])nl--;
while(nr+1<=m&&!col[qx[i]][nr+1])nr++;
rep(j,nl,nr)lmx[qx[i]][j]=nl,rmx[qx[i]][j]=nr; while(jud(qy[i]))ans++;
}
rep(i,1,k)write(res[i]);
return (0-0);
}

并不对劲的CF480E:Parking Lot的更多相关文章

  1. [CF480E]Parking Lot

    题意:给一个$n\times m$的网格,初始时有些地方不能选,给$k$个询问$(x,y)$,每次令$(x,y)$不能选,然后询问最大子正方形的边长 如果按原题来做,禁止选一个点对答案的影响是极其鬼畜 ...

  2. CF480E Parking Lot(单调队列+dp然鹅并不是优化)

    (全英文题面所以直接放化简题意) 题意:在一个二维平面内,初始有一些点,然后每个时间点加入一些点,对每个时间点求平面内最大的无障碍正方形 (这次的题目是真的神仙啊...) 首先,考虑暴力,如果对每一个 ...

  3. CF480E Parking Lot(two-pointers + 单调队列优化)

    题面 动态加障碍物,同时查询最大子正方形. n,m≤2000n,m\leq2000n,m≤2000 题解 加障碍不好做,直接离线后反着做,每次就是清除一个障碍物. 显然倒着做答案是递增的,而且答案的值 ...

  4. [LintCode] Parking Lot 停车场问题

    Design a parking lot. see CC150 OO Design for details.1) n levels, each level has m rows of spots an ...

  5. [CareerCup] 8.4 Parking Lot 停车场问题

    8.4 Design a parking lot using object-oriented principles. LintCode上的原题,请参见我的另一篇博客Parking Lot 停车场问题. ...

  6. Codeforces 46D Parking Lot

    传送门 D. Parking Lot time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  7. Codeforces Round #135 (Div. 2) E. Parking Lot 线段数区间合并

    E. Parking Lot time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  8. Amazon Interview Question: Design an OO parking lot

    Design an OO parking lot. What classes and functions will it have. It should say, full, empty and al ...

  9. HDOJ(HDU) 1673 Optimal Parking

    Problem Description When shopping on Long Street, Michael usually parks his car at some random locat ...

随机推荐

  1. 国产手机的谷X服务

    我换了个新手机,但面临了一个棘手的问题,就是原来的手机的谷X服务是用免root安装器自动安装好的,安装器找不到了.而后我发现现在的手机并没有阉割掉谷X服务,原因不详,好处不用在去一个个安装了.我装好y ...

  2. vue 循环Redio

    标准用法,做个笔记.(图示是elementUI,其他框架大同小异) <el-radio-group @change="changePayHandler" v-model=&q ...

  3. python桶排序代码

    代码基于3.8 def bucketSort(nums): #选择一个最大的数 max_num = max(nums) # 创建一个元素全是0的列表, 当做桶 bucket = [0]*(max_nu ...

  4. 预处理、const、static与sizeof-static全局变量与普通的全局变量有什么区别

    1:全局变量的说明之前再加上static就构成了静态的全局变量.全局变量本身就是静态存储方式,静态全局变量当然也是静态存储方式.这两者在存储方式上并无不同.这两者的区别在于,非静态全局变量的作用域是整 ...

  5. 文本处理工具sed

    处理文本的工具sed  行编辑器 ,默认自带循环. sed是一种流编辑器,它一次处理一行内容. 功能:主要用来自动编辑一个或多个文件,简化对文件的反复操作,编写转换程序等 sed工具 用法: sed ...

  6. Ubuntu使用PBIS认证

    1:下载 https://github.com/BeyondTrust/pbis-open/releases wget https://github.com/BeyondTrust/pbis-open ...

  7. 在windows系统搭建Flutter开发环境

    开发环境搭建(Windows) 系统要求 设置FLutter镜像(非必须) 获取Flutter SDK Android开发环境设置 安装Flutter插件 系统要求 在Windows上要安装并运行Fl ...

  8. springboot批量读取参数映射到实体类

    spring读取配置参数可以通过${name}的方式获取,如properties文件中存在如下配置 person.username=xi 则可通过${person.username}获取其对应的值xi ...

  9. React入门----基础篇

    React 背景介绍 React 起源于 Facebook 的内部项目,因为该公司对市场上所有 JavaScript MVC 框架,都不满意,就决定自己写一套,用来架设 Instagram 的网站.做 ...

  10. git学习教程二之远程仓库学习

    首先你需要注册一个github用户名,我的github账户是:1654218052@qq.com 由于本地的git仓库和github的仓库是通过SSH加密的,所以我们还需要设置一点东西哦 第1步:创建 ...