Make It Connected CodeForces - 1095F (建图+最小生成树)
Make It Connected
You are given an undirected graph consisting of nn vertices. A number is written on each vertex; the number on vertex ii is aiai. Initially there are no edges in the graph.
You may add some edges to this graph, but you have to pay for them. The cost of adding an edge between vertices xx and yy is ax+ayax+ay coins. There are also mm special offers, each of them is denoted by three numbers xx, yy and ww, and means that you can add an edge connecting vertices xx and yy and pay ww coins for it. You don't have to use special offers: if there is a pair of vertices xx and yy that has a special offer associated with it, you still may connect these two vertices paying ax+ayax+ay coins for it.
What is the minimum number of coins you have to spend to make the graph connected? Recall that a graph is connected if it's possible to get from any vertex to any other vertex using only the edges belonging to this graph.
Input
The first line contains two integers nn and mm (1≤n≤2⋅1051≤n≤2⋅105, 0≤m≤2⋅1050≤m≤2⋅105) — the number of vertices in the graph and the number of special offers, respectively.
The second line contains nn integers a1,a2,…,ana1,a2,…,an (1≤ai≤10121≤ai≤1012) — the numbers written on the vertices.
Then mm lines follow, each containing three integers xx, yy and ww (1≤x,y≤n1≤x,y≤n, 1≤w≤10121≤w≤1012, x≠yx≠y) denoting a special offer: you may add an edge connecting vertex xx and vertex yy, and this edge will cost ww coins.
Output
Print one integer — the minimum number of coins you have to pay to make the graph connected.
Examples
Input
3 2
1 3 3
2 3 5
2 1 1
Output
5
Input
4 0
1 3 3 7
Output
16
Input
5 4
1 2 3 4 5
1 2 8
1 3 10
1 4 7
1 5 15
Output
18
Note
In the first example it is possible to connect 11 to 22 using special offer 22, and then 11 to 33 without using any offers.
In next two examples the optimal answer may be achieved without using special offers.
题意:
赵老师因为感冒回家进行休息
在睡梦中他竟然来到了一个神奇的地方
这个地方可以抽象为n个点,每个点有一个点权,第i个点的点权为a_i
此时,他的脑海里竟然浮现出了一段文字:
卑鄙的异乡人啊,
你太年轻太简单了,有时还很朴素
我需要给你一些微小的考验
所有点联通之时,
返程之路将浮现。
赵老师知道,想要在点i和点j之间连一条边,所需时间为a_i+a_j
但是作为一个单身多年的魔法师,他可以施展m次魔法,第i次魔法可以在x_i和y_i之间连一条边,所需时间是w_i
赵老师清楚的记得,第二天他还需要上课,因此你需要帮他算出将所有点联通所需的最短时间是多少
思路:
将每一个节点和除了它自己以外的其他n-1个节点中,权值最小的节点相连接。
这样一共是n个边,
还有题目给出的m个边。
在这n+m个边中跑Kruskal算法,求出最小生成树的代价即可。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
inline void getInt(int* p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
struct Edge
{
int f, t;
ll w;
Edge() {}
Edge(int ff, int tt, ll ww)
{
if(ff==9&&tt==4)
{
ff=9;
}
f = ff;
t = tt;
w = ww;
}
};
std::vector<Edge> edge;
bool cmp(Edge a, Edge b)
{
return a.w < b.w;
}
// 并查集部分
int fa[maxn];
int findpar(int x)
{
if (fa[x] == x)
return x;
else
return fa[x] = findpar(fa[x]);
}
void initufs(int n)
{
repd(i, 1, n)
{
fa[i] = i;
}
}
void Merge(int x,int y)
{
x=findpar(x);
y=findpar(y);
if(x!=y)
{
fa[x]=y;
}
}
int n, m; //
ll a[maxn];
ll Kruskal()
{
ll res = 0ll;
initufs(n);
int cnt = 0; // 记录了MST加入了几个节点
for (int i = 0; i < edge.size(); i++)
{
int u = findpar(edge[i].f);
int v = findpar(edge[i].t);
if (u == v)
continue;
Merge(u,v);
res += edge[i].w;
cnt++;
if (cnt == n - 1) // 已经加满了树
break;
}
if (cnt != n - 1)
return -1;
else
return res;
}
typedef pair<ll, int> pli;
pli pre[maxn];
pli last[maxn];
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
du2(n, m);
repd(i, 1, n)
{
scanf("%lld", &a[i]);
}
pre[1] = mp(a[1], 1);
last[n] = mp(a[n], n);
repd(i, 2, n)
{
if (a[i] < pre[i - 1].fi)
{
pre[i] = mp(a[i], i);
} else
{
pre[i] = pre[i - 1];
}
}
for (int i = n - 1; i >= 1; --i)
{
if (a[i] < last[i + 1].fi)
{
last[i] = mp(a[i], i);
} else
{
last[i] = last[i + 1];
}
}
edge.push_back(Edge(1, last[2].se, last[2].fi + a[1]));
edge.push_back(Edge(n, pre[n - 1].se, pre[n - 1].fi + a[n]));
repd(i, 2, n - 1)
{
if (last[i + 1].fi < pre[i - 1].fi)
{
edge.push_back(Edge(i, last[i + 1].se, last[i + 1].fi + a[i]));
} else
{
edge.push_back(Edge(i, pre[i - 1].se, pre[i - 1].fi + a[i]));
}
}
repd(i, 1, m)
{
int x, y;
ll z;
scanf("%d %d %lld", &x, &y, &z);
edge.push_back(Edge(x, y, z));
}
sort(ALL(edge), cmp);
if (n == 1)
{
puts("0");
return 0;
}
printf("%lld\n", Kruskal());
return 0;
}
inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
Make It Connected CodeForces - 1095F (建图+最小生成树)的更多相关文章
- poj 3026 Borg Maze bfs建图+最小生成树
题目说从S开始,在S或者A的地方可以分裂前进. 想一想后发现就是求一颗最小生成树. 首先bfs预处理得到每两点之间的距离,我的程序用map做了一个映射,将每个点的坐标映射到1-n上,这样建图比较方便. ...
- BZOJ 4242 水壶(BFS建图+最小生成树+树上倍增)
题意 JOI君所居住的IOI市以一年四季都十分炎热著称. IOI市是一个被分成纵H*横W块区域的长方形,每个区域都是建筑物.原野.墙壁之一.建筑物的区域有P个,编号为1...P. JOI君只能进入建筑 ...
- 题解——洛谷P1550 [USACO08OCT]打井Watering Hole(最小生成树,建图)
题面 题目背景 John的农场缺水了!!! 题目描述 Farmer John has decided to bring water to his N (1 <= N <= 300) pas ...
- Codeforces Round #523 (Div. 2) E. Politics(最小费+思维建图)
https://codeforces.com/contest/1061/problem/E 题意 有n个点(<=500),标记第i个点的代价a[i],然后分别在这n个点建两棵树,对于每颗树的每个 ...
- 区间->点,点->区间,线段树优化建图+dijstra Codeforces Round #406 (Div. 2) D
http://codeforces.com/contest/787/problem/D 题目大意:有n个点,三种有向边,这三种有向边一共加在一起有m个,然后起点是s,问,从s到所有点的最短路是多少? ...
- CodeForces 786B Legacy(线段树优化建图+最短路)
[题目链接] http://codeforces.com/problemset/problem/786/B [题目大意] 给出一些星球,现在有一些传送枪,可以从一个星球到另一个星球, 从一个星球到另一 ...
- Codeforces Round #545 (Div. 2) E 强连通块 + dag上求最大路径 + 将状态看成点建图
https://codeforces.com/contest/1138/problem/E 题意 有n个城市(1e5),有m条单向边(1e5),每一周有d天(50),对于每个城市假如在某一天为1表示这 ...
- 【转】Codeforces Round #406 (Div. 1) B. Legacy 线段树建图&&最短路
B. Legacy 题目连接: http://codeforces.com/contest/786/problem/B Description Rick and his co-workers have ...
- [Codeforces 1197E]Culture Code(线段树优化建图+DAG上最短路)
[Codeforces 1197E]Culture Code(线段树优化建图+DAG上最短路) 题面 有n个空心物品,每个物品有外部体积\(out_i\)和内部体积\(in_i\),如果\(in_i& ...
随机推荐
- 《剑指offer》Q13-18 (牛客10.13)
目录 Q13 调整数组顺序使奇数位于偶数前 Q14 链表中倒数第k个结点 Q15 反转链表 Q16 合并两个有序链表 Q17 树的子结构 Q18 二叉树的镜像 Q13 调整数组顺序使奇数位于偶数前 输 ...
- Java学习笔记-Lambda表达式
Lambda表达式支持将代码块作为方法参数,Lambda表达式允许使用简洁的代码来创建只有一个抽象方法的接口(这种接口被称为函数是接口)的实例 意义 自从Java 8开始,Java支持Lambda表达 ...
- Odoo13 新变化:存货核算
Odoo13将于2019年10月发布,本次发布也包含了大量的改进,例如,对存货核算的重构. 去掉了 产品历史价格product.price.history ,增加了 stock valuation l ...
- 2019秋JAVA第三周课程总结及实验报告(二)
个人博客 一.基础字符串操作 题目:已知字符串:"this is a test of java".按要求执行以下操作:(要求源代码.结果截图.) 统计该字符串中字母s出现的次数. ...
- [转帖]System Dynamic Management Views
System Dynamic Management Views https://docs.microsoft.com/en-us/sql/relational-databases/system-dyn ...
- 创建安全的 Netty 程序
1.使用 SSL/TLS 创建安全的 Netty 程序 SSL 和 TLS 是众所周知的标准和分层的协议,它们可以确保数据时私有的 Netty提供了SSLHandler对网络数据进行加密 使用Http ...
- fiddler笔记:快捷工具栏
WinConfig: Comment 为所有选中的Session添加Comment. Replay Replay+ctrl 重新发送请求,而不包括任何条件请求头. Replay+shift 指定每 ...
- 列表推导:python2和python3中作用域的问题
python2中: x = 'my love' dummy = [x for x in 'ABC'] print x 此时x打印为:'C' python3中: x = 'my love' dummy ...
- Python Socket套接字编程
Python 的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆为了在阿姆斯特丹打发时间,决心开发一个新的脚本解释程序,作为ABC语言的一种继承.Py ...
- HttpContext is null
HttpContext context1 = System.Web.HttpContext.Current; HttpContext context2 = System.Runtime.Remotin ...