用R语言的quantreg包进行分位数回归
什么是分位数回归
分位数回归(Quantile Regression)是计量经济学的研究前沿方向之一,它利用解释变量的多个分位数(例如四分位、十分位、百分位等)来得到被解释变量的条件分布的相应的分位数方程。
与传统的OLS只得到均值方程相比,分位数回归可以更详细地描述变量的统计分布。它是给定回归变量X,估计响应变量Y条件分位数的一个基本方法;它不仅可以度量回归变量在分布中心的影响,而且还可以度量在分布上尾和下尾的影响,因此较之经典的最小二乘回归具有独特的优势。众所周知,经典的最小二乘回归是针对因变量的均值(期望)的:模型反映了因变量的均值怎样受自变量的影响,
$y=\beta X+\epsilon$,$E(y)=\beta X$
分位数回归的核心思想就是从均值推广到分位数。最小二乘回归的目标是最小化误差平方和,分位数回归也是最小化一个新的目标函数:
$\min_{\xi \in \mathcal{R}} \sum \rho_{\tau}(y_i-\xi)$
quantreg包
quantreg即:Quantile Regression,拥有条件分位数模型的估计和推断方法,包括线性、非线性和非参模型;处理单变量响应的条件分位数方法;处理删失数据的几种方法。此外,还包括基于预期风险损失的投资组合选择方法。
实例
library(quantreg) # 载入quantreg包
data(engel) # 加载quantreg包自带的数据集
分位数回归(tau = 0.5)
fit1 = rq(foodexp ~ income, tau = 0.5, data = engel)
r1 = resid(fit1) # 得到残差序列,并赋值为变量r1
c1 = coef(fit1) # 得到模型的系数,并赋值给变量c1
summary(fit1) # 显示分位数回归的模型和系数
`
Call: rq(formula = foodexp ~ income, tau = 0.5, data = engel)
tau: [1] 0.5
Coefficients:
coefficients lower bd upper bd
(Intercept) 81.48225 53.25915 114.01156
income 0.56018 0.48702 0.60199
`
summary(fit1, se = "boot") # 通过设置参数se,可以得到系数的假设检验
`
Call: rq(formula = foodexp ~ income, tau = 0.5, data = engel)
tau: [1] 0.5
Coefficients:
Value Std. Error t value Pr(>|t|)
(Intercept) 81.48225 27.57092 2.95537 0.00344
income 0.56018 0.03507 15.97392 0.00000
`
分位数回归(tau = 0.5、0.75)
fit1 = rq(foodexp ~ income, tau = 0.5, data = engel)
fit2 = rq(foodexp ~ income, tau = 0.75, data = engel)
模型比较
anova(fit1,fit2) #方差分析
`
Quantile Regression Analysis of Deviance Table
Model: foodexp ~ income
Joint Test of Equality of Slopes: tau in { 0.5 0.75 }
Df Resid Df F value Pr(>F)
1 1 469 12.093 0.0005532 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
`
画图比较分析
plot(engel$foodexp , engel$income,pch=20, col = "#2E8B57",
main = "家庭收入与食品支出的分位数回归",xlab="食品支出",ylab="家庭收入")
lines(fitted(fit1), engel$income,lwd=2, col = "#EEEE00")
lines(fitted(fit2), engel$income,lwd=2, col = "#EE6363")
legend("topright", c("tau=.5","tau=.75"), lty=c(1,1),
col=c("#EEEE00","#EE6363"))

不同分位点的回归比较
fit = rq(foodexp ~ income, tau = c(0.05,0.25,0.5,0.75,0.95), data = engel)
plot( summary(fit))

多元分位数回归
data(barro)
fit1 <- rq(y.net ~ lgdp2 + fse2 + gedy2 + Iy2 + gcony2, data = barro,tau=.25)
fit2 <- rq(y.net ~ lgdp2 + fse2 + gedy2 + Iy2 + gcony2, data = barro,tau=.50)
fit3 <- rq(y.net ~ lgdp2 + fse2 + gedy2 + Iy2 + gcony2, data = barro,tau=.75)
# 替代方式 fit <- rq(y.net ~ lgdp2 + fse2 + gedy2 + Iy2 + gcony2, method = "fn", tau = 1:4/5, data = barro)
anova(fit1,fit2,fit3) # 不同分位点模型比较-方差分析
anova(fit1,fit2,fit3,joint=FALSE)
`
Quantile Regression Analysis of Deviance Table
Model: y.net ~ lgdp2 + fse2 + gedy2 + Iy2 + gcony2
Tests of Equality of Distinct Slopes: tau in { 0.25 0.5 0.75 }
Df Resid Df F value Pr(>F)
lgdp2 2 481 1.0656 0.34535
fse2 2 481 2.6398 0.07241 .
gedy2 2 481 0.7862 0.45614
Iy2 2 481 0.0447 0.95632
gcony2 2 481 0.0653 0.93675
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Warning message:
In summary.rq(x, se = se, covariance = TRUE) : 1 non-positive fis
`
不同分位点拟合曲线的比较
plot(barro$y.net,pch=20, col = "#2E8B57",
main = "不同分位点拟合曲线的比较")
lines(fitted(fit1),lwd=2, col = "#FF00FF")
lines(fitted(fit2),lwd=2, col = "#EEEE00")
lines(fitted(fit3),lwd=2, col = "#EE6363")
legend("topright", c("tau=.25","tau=.50","tau=.75"), lty=c(1,1),
col=c( "#FF00FF","#EEEE00","#EE6363"))

时间序列数据之动态线性分位数回归
library(zoo)
data("AirPassengers", package = "datasets")
ap <- log(AirPassengers)
fm <- dynrq(ap ~ trend(ap) + season(ap), tau = 1:4/5)
`
Dynamic quantile regression "matrix" data:
Start = 1949(1), End = 1960(12)
Call:
dynrq(formula = ap ~ trend(ap) + season(ap), tau = 1:4/5)
Coefficients:
tau= 0.2 tau= 0.4 tau= 0.6 tau= 0.8
(Intercept) 4.680165533 4.72442529 4.756389747 4.763636251
trend(ap) 0.122068032 0.11807467 0.120418846 0.122603451
season(ap)Feb -0.074408403 -0.02589716 -0.006661952 -0.013385535
season(ap)Mar 0.082349382 0.11526821 0.114939193 0.106390507
season(ap)Apr 0.062351869 0.07079315 0.063283042 0.066870808
season(ap)May 0.064763333 0.08453454 0.069344618 0.087566554
season(ap)Jun 0.195099116 0.19998275 0.194786890 0.192013960
season(ap)Jul 0.297796876 0.31034824 0.281698714 0.326054871
season(ap)Aug 0.287624540 0.30491687 0.290142727 0.275755490
season(ap)Sep 0.140938329 0.14399906 0.134373833 0.151793646
season(ap)Oct 0.002821207 0.01175582 0.013443965 0.002691383
season(ap)Nov -0.154101220 -0.12176290 -0.124004759 -0.136538575
season(ap)Dec -0.031548941 -0.01893221 -0.023048200 -0.019458814
Degrees of freedom: 144 total; 131 residual
`
sfm <- summary(fm)
plot(sfm)

不同分位点拟合曲线的比较
fm1 <- dynrq(ap ~ trend(ap) + season(ap), tau = .25)
fm2 <- dynrq(ap ~ trend(ap) + season(ap), tau = .50)
fm3 <- dynrq(ap ~ trend(ap) + season(ap), tau = .75)
plot(ap,cex = .5,lwd=2, col = "#EE2C2C",main = "时间序列分位数回归")
lines(fitted(fm1),lwd=2, col = "#1874CD")
lines(fitted(fm2),lwd=2, col = "#00CD00")
lines(fitted(fm3),lwd=2, col = "#CD00CD")
legend("topright", c("原始拟合","tau=.25","tau=.50","tau=.75"), lty=c(1,1),
col=c( "#EE2C2C","#1874CD","#00CD00","#CD00CD"),cex = 0.65)

除了本文介绍的以上内容,quantreg包还包含残差形态的检验、非线性分位数回归和半参数和非参数分位数回归等等,详细参见:用R语言进行分位数回归-詹鹏(北京师范大学经济管理学院)和Package ‘quantreg’。
反馈与建议
- 作者:ShangFR
- 邮箱:shangfr@foxmail.com
用R语言的quantreg包进行分位数回归的更多相关文章
- R语言︱H2o深度学习的一些R语言实践——H2o包
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- R语言H2o包的几个应用案例 笔者寄语:受启发 ...
- R语言:recommenderlab包的总结与应用案例
R语言:recommenderlab包的总结与应用案例 1. 推荐系统:recommenderlab包整体思路 recommenderlab包提供了一个可以用评分数据和0-1数据来发展和测试推荐算 ...
- 使用R语言的RTCGA包获取TCGA数据--转载
转载生信技能树 https://mp.weixin.qq.com/s/JB_329LCWqo5dY6MLawfEA TCGA数据源 - R包RTCGA的简单介绍 - 首先安装及加载包 - 指定任意基因 ...
- R语言中文分词包jiebaR
R语言中文分词包jiebaR R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大. R语言作为统计学一门语言,一直在小众领域闪耀着光芒.直到大数据 ...
- R语言中常用包(二)
数据导入 以下R包主要用于数据导入和保存数据 feather:一种快速,轻量级的文件格式.在R和python上都可使用readr:实现表格数据的快速导入.中文介绍可参考这里readxl:读取Micro ...
- R语言︱文本挖掘——jiabaR包与分词向量化的simhash算法(与word2vec简单比较)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- <数据挖掘之道>摘录话语:虽然我比 ...
- R语言 文本挖掘 tm包 使用
#清除内存空间 rm(list=ls()) #导入tm包 library(tm) library(SnowballC) #查看tm包的文档 #vignette("tm") ##1. ...
- R语言使用 multicore 包进行并行计算
R语言是单线程的,如果数据量比较大的情况下最好用并行计算来处理数据,这样会获得运行速度倍数的提升.这里介绍一个基于Unix系统的并行程序包:multicore. 我们用三种不同的方式来进行一个简单的数 ...
- R语言安装xlsx包,读入excel表格
开学的时候,男神给了数据(.xlsx格式)让用R语言分析分析,作为编程小白,读了一天都没读近R,更别提如何分析了. 现在小伙伴们都喜欢读txt 和csv格式的,好多xlsx的表格读不进R,将xlsx格 ...
随机推荐
- Java 对象引用方式 —— 强引用、软引用、弱引用和虚引用
Java中负责内存回收的是JVM.通过JVM回收内存,我们不需要像使用C语音开发那样操心内存的使用,但是正因为不用操心内存的时候,也会导致在内存回收方面存在不够灵活的问题.为了解决内存操作不灵活的问题 ...
- 使用Java纯代码实现MySQL的连接
建立数据库 1. 点击连接-->MySQL: 输入连接名 . 主机名/IP地址 .端口 .用户名.密码(没有密码就省略),然后点击确定,建立的表格是灰色表示关闭状态,双击开启 2. 重新创建 ...
- Java 的设计模式之一装饰者模式
刚开始接触装饰者的设计模式,感觉挺难理解的,不够后来花了一个晚上的时间,终于有头绪了 装饰者设计模式:如果想对已经存在的对象进行装饰,那么就定义一个类,在类中对已经有的对象进行功能的增强或添加另外的行 ...
- Ucos系统任务间的通信详解
物联网开发中,ucos系统任务间的通信是指,两个任务之间有数据的交互,具体的一起来看看吧. 1)消息邮箱 我们还是提供两个任务Task1和Task2,假设我们还是解决刚刚的问题,Task1进行按键扫描 ...
- SVM算法
本文主要介绍支持向量机理论推导及其工程应用. 1 基本介绍 支持向量机算法是一个有效的分类算法,可用于分类.回归等任务,在传统的机器学习任务中,通过人工构造.选择特征,然后使用支持向量机作为训练器,可 ...
- .NET平台开源项目速览(5)深入使用与扩展SharpConfig组件
上个月在文章:这些.NET开源项目你知道吗?让.NET开源来得更加猛烈些吧 和 .NET平台开源项目速览(1)SharpConfig配置文件读写组件 中都提到了SharpConfig组件,简单轻量级 ...
- ASP.NET Core 中的依赖注入 [共7篇]
一.控制反转(IoC) ASP.NET Core在启动以及后续针对每个请求的处理过程中的各个环节都需要相应的组件提供相应的服务,为了方便对这些组件进行定制,ASP.NET通过定义接口的方式对它们进行了 ...
- MySQL utf8mb4 字符集:支持 emoji 表情符号
转载地址:http://www.linuxidc.com/Linux/2013-05/84360.htm 我用他的方法解决了问题,亲测可用,不要用Nnvicat for Mysql去查询编码,在服务器 ...
- Ubuntu杂记——Apache+PHP+MySQL的安装
昨天晚上,参考博客园的另一篇文章,在自己的Ubuntu上搭建了一个Apache+PHP+MySQL的服务器,在此谨记,以备不时之需. 一.安装Apache sudo apt-get install a ...
- C算法编程题(三)画表格
前言 上一篇<C算法编程题(二)正螺旋> 写东西前还是喜欢吐槽点东西,要不然写的真还没意思,一直的想法是在博客园把自己上学和工作时候整理的东西写出来和大家分享,就像前面写的<T-Sq ...