B - Mike and Shortcuts

Description

Recently, Mike was very busy with studying for exams and contests. Now he is going to chill a bit by doing some sight seeing in the city.

City consists of n intersections numbered from 1 to n. Mike starts walking from his house located at the intersection number 1 and goes along some sequence of intersections. Walking from intersection number i to intersection j requires |i - j| units of energy. The total energy spent by Mike to visit a sequence of intersections p1 = 1, p2, ..., pk is equal to 

units of energy.

Of course, walking would be boring if there were no shortcuts. A shortcut is a special path that allows Mike walking from one intersection to another requiring only 1 unit of energy. There are exactly n shortcuts in Mike's city, the ith of them allows walking from intersection ito intersection ai (i ≤ ai ≤ ai + 1) (but not in the opposite direction), thus there is exactly one shortcut starting at each intersection. Formally, if Mike chooses a sequence p1 = 1, p2, ..., pk then for each 1 ≤ i < k satisfying pi + 1 = api and api ≠ pi Mike will spendonly 1 unit of energy instead of |pi - pi + 1| walking from the intersection pi to intersection pi + 1. For example, if Mike chooses a sequence p1 = 1, p2 = ap1, p3 = ap2, ..., pk = apk - 1, he spends exactly k - 1 units of total energy walking around them.

Before going on his adventure, Mike asks you to find the minimum amount of energy required to reach each of the intersections from his home. Formally, for each 1 ≤ i ≤ n Mike is interested in finding minimum possible total energy of some sequence p1 = 1, p2, ..., pk = i.

Input

The first line contains an integer n(1 ≤ n ≤ 200 000) — the number of Mike's city intersection.

The second line contains n integers a1, a2, ..., an(i ≤ ai ≤ n , , describing shortcuts of Mike's city, allowing to walk from intersection i to intersection ai using only 1 unit of energy. Please note that the shortcuts don't allow walking in opposite directions (from ai to i).

Output

In the only line print n integers m1, m2, ..., mn, where mi denotes the least amount of total energy required to walk from intersection 1to intersection i.

Sample Input

Input
3
2 2 3
Output
0 1 2 
Input
5
1 2 3 4 5
Output
0 1 2 3 4 
Input
7
4 4 4 4 7 7 7
Output
0 1 2 1 2 3 3 

Hint

In the first sample case desired sequences are:

1: 1; m1 = 0;

2: 1, 2; m2 = 1;

3: 1, 3; m3 = |3 - 1| = 2.

In the second sample case the sequence for any intersection 1 < i is always 1, i and mi = |1 - i|.

In the third sample case — consider the following intersection sequences:

1: 1; m1 = 0;

2: 1, 2; m2 = |2 - 1| = 1;

3: 1, 4, 3; m3 = 1 + |4 - 3| = 2;

4: 1, 4; m4 = 1;

5: 1, 4, 5; m5 = 1 + |4 - 5| = 2;

6: 1, 4, 6; m6 = 1 + |4 - 6| = 3;

7: 1, 4, 5, 7; m7 = 1 + |4 - 5| + 1 = 3.

题意:

n个城市排成一排,起点是第一个城市,每次可以向左或者右相邻城市走,路程为1

每个城市有一个捷径ai 表示第i个城市可以直接到ai城市,路程为1.

问从第一个城市出发,到达每个城市的最短路。

分析:相当于每个城市有三条路可以选择,直接用bfs求最短路径。

#include <iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int MAXN=;
int a[MAXN],b[MAXN],q[MAXN],d[MAXN];
int main()
{
int n,r=,l=; memset(q,,sizeof(q));
memset(b,0x6f,sizeof(b));
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
b[]=;q[]=;d[++r]=;
for(;l<=r;l++)
{
if(d[l]>&&!q[d[l]-])
{
q[d[l]-]=;
b[d[l]-]=b[d[l]]+;
d[++r]=d[l]-;
}
if(d[l]<n&&!q[d[l]+])
{
q[d[l]+]=;
b[d[l]+]=b[d[l]]+;
d[++r]=d[l]+;
} if(!q[a[d[l]]])
{
q[a[d[l]]]=;
b[a[d[l]]]=b[d[l]]+;
d[++r]=a[d[l]];
}
}
for(int i=;i<n;i++) printf("%d ",b[i]);
printf("%d\n",b[n]);
return ;
}

Codeforces Round #361 (Div. 2) B的更多相关文章

  1. Codeforces Round #361 (Div. 2) C.NP-Hard Problem

    题目连接:http://codeforces.com/contest/688/problem/C 题意:给你一些边,问你能否构成一个二分图 题解:二分图:二分图又称作二部图,是图论中的一种特殊模型. ...

  2. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 离散化 排列组合

    E. Mike and Geometry Problem 题目连接: http://www.codeforces.com/contest/689/problem/E Description Mike ...

  3. Codeforces Round #361 (Div. 2) D. Friends and Subsequences 二分

    D. Friends and Subsequences 题目连接: http://www.codeforces.com/contest/689/problem/D Description Mike a ...

  4. Codeforces Round #361 (Div. 2) C. Mike and Chocolate Thieves 二分

    C. Mike and Chocolate Thieves 题目连接: http://www.codeforces.com/contest/689/problem/C Description Bad ...

  5. Codeforces Round #361 (Div. 2) B. Mike and Shortcuts bfs

    B. Mike and Shortcuts 题目连接: http://www.codeforces.com/contest/689/problem/B Description Recently, Mi ...

  6. Codeforces Round #361 (Div. 2) A. Mike and Cellphone 水题

    A. Mike and Cellphone 题目连接: http://www.codeforces.com/contest/689/problem/A Description While swimmi ...

  7. Codeforces Round #361 (Div. 2) E. Mike and Geometry Problem 【逆元求组合数 && 离散化】

    任意门:http://codeforces.com/contest/689/problem/E E. Mike and Geometry Problem time limit per test 3 s ...

  8. Codeforces Round #361 (Div. 2) D

    D - Friends and Subsequences Description Mike and !Mike are old childhood rivals, they are opposite ...

  9. Codeforces Round #361 (Div. 2) C

    C - Mike and Chocolate Thieves Description Bad news came to Mike's village, some thieves stole a bun ...

随机推荐

  1. 额。。万恶之源就是c

    http://blog.csdn.net/feeltouch/article/details/45155529

  2. 如何将 Windows Server 2012 r2 打造成 Windows 8.1?

    Server 系列相对于桌面系统Windows 8.1 .嵌入式系统Embedded 8.1来说,还是有所不同的,有其独特性,所以,标题写着“打造”充其量不过是不断接近的意思.还有很多地方存在进一步深 ...

  3. Python之路,Day7 - Python基础7 面向对象

    本节内容:   面向对象编程介绍 为什么要用面向对象进行开发? 面向对象的特性:封装.继承.多态 类.方法.     引子 你现在是一家游戏公司的开发人员,现在需要你开发一款叫做<人狗大战> ...

  4. web项目中各种路径的获取

    以工程名为/DemoWeb为例: 访问的jsp为:http://localhost:8080/DemoWeb/test/index.jsp 1 JSP中获得当前应用的相对路径和绝对路径 (1)得到工程 ...

  5. SQL Server 从数据库中查询去年的今天的数据的sql语句

    因为最近的项目的一个小功能需要实现当前数据和历史的今天做一个对比.在网上也查了很久,很多都是实现一个月内的,一年内的所有数据,昨晚突然就找到了下面的实现方法,在SQL Server2008中试了一下, ...

  6. GroupJoin和Join的声明及调用

    public static IEnumerable<TResult> Join<TOuter, TInner, TKey, TResult>(this IEnumerable& ...

  7. Python的方法解析顺序(MRO)

    mro即method resolution order,主要用于在多继承时判断调的属性的路径(来自于哪个类). http://blog.csdn.net/imzoer/article/details/ ...

  8. 使用Fiddler关于“由于目标计算机积极拒绝,无法连接。”的解决方案

    今天使用Fiddler的时候遇到下面这个问题:在地址栏想打开个一般处理程序,出现连接本机失败的提示,如下图: 而这在我没打开Fiddler的时候是显示正常的. 查看Fiddler,在嗅探 -> ...

  9. 《ASP.NET MVC高级编程(4版)》读书笔记(5)表单和HTML辅助方法

    5.1 表单使用 5.1.1 action 和 method 特性 <form action="/Home/Index">     <input name=&qu ...

  10. Delphi容器类之---TOrderedList、TStack、TQueue、TObjectStack、TObjectQueue

    TOrderedList.TStack.TQueue Contnrs单元还定义了其他三个类:TOrderedList.TStack.TQueue TOrderedList TOrderedList = ...