UVa 11181 - Probability|Given(条件概率)
链接:
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2122
题意:
有n个人准备去超市逛,其中第i个人买东西的概率是Pi。逛完以后你得知有r个人买了东西。
根据这一信息,请计算每个人实际买了东西的概率。
输入n(1≤n≤20)和r(0≤r≤n),输出每个人实际买了东西的概率。
分析:
设“r个人买了东西”这个事件为E,“第i个人买东西”这个事件为Ei,则要求的是条件概率P(Ei|E)。
根据条件概率公式,P(Ei|E) = P(EiE) / P(E)。
P(E)依然可以用全概率公式。例如,n=4,r=2,有6种可能:1100, 1010, 1001, 0110, 0101, 0011,
其中1100的概率为P1*P2*(1-P3)*(1-P4),其他类似,设opt[k]表示第k个人是否买东西(1表示买,0表示不买),
则可以用递归的方法枚举恰好有r个opt[k]=1的情况。
如何计算P(EiE)呢?方法一样,只是枚举的时候要保证第opt[i]=1。
用tot表示E的概率,sum[i]表示opt[i]=1的概率之和,则答案为P(EiE)/P(E)=sum[i]/tot。
代码:
import java.io.*;
import java.util.*; public class Main {
static final int UP = 20 + 5;
static int n, r;
static double P[] = new double[UP], sum[] = new double[UP];
static boolean opt[] = new boolean[UP]; static void dfs(int d, int s, double prob) { // d为第几个,s为选了几个,prob为当前概率
if(s > r || d - s > n - r) return; // 选的个数超过了限制或者不选的个数超过了限制
if(d == n) {
sum[n] += prob;
for(int i = 0; i < n; i++) if(opt[i]) sum[i] += prob;
return;
}
opt[d] = true;
dfs(d+1, s+1, prob * P[d]);
opt[d] = false;
dfs(d+1, s, prob * (1-P[d]));
} public static void main(String args[]) {
Scanner cin = new Scanner(new BufferedInputStream(System.in));
for(int cases = 1; ; cases++) {
n = cin.nextInt();
r = cin.nextInt();
if(n == 0) break;
for(int i = 0; i < n; i++) P[i] = cin.nextDouble(); Arrays.fill(sum, 0);
Arrays.fill(opt, false);
dfs(0, 0, 1); System.out.printf("Case %d:\n", cases);
for(int i = 0; i < n; i++)
System.out.printf("%.6f\n", sum[i] / sum[n]);
}
cin.close();
}
}
UVa 11181 - Probability|Given(条件概率)的更多相关文章
- Uva - 11181 Probability|Given (条件概率)
设事件B为一共有r个人买了东西,设事件Ai为第i个人买了东西. 那么这个题目实际上就是求P(Ai|B),而P(Ai|B)=P(AiB)/P(B),其中P(AiB)表示事件Ai与事件B同时发生的概率,同 ...
- 概率论 --- Uva 11181 Probability|Given
Uva 11181 Probability|Given Problem's Link: http://acm.hust.edu.cn/vjudge/problem/viewProblem.acti ...
- uva 11181 - Probability|Given(概率)
题目链接:uva 11181 - Probability|Given 题目大意:有n个人去超市买东西,给出r,每个人买东西的概率是p[i],当有r个人买东西的时候,第i个人恰好买东西的概率. 解题思路 ...
- UVA - 11181 Probability|Given (条件概率)
题意:有n个人,已知每个人买东西的概率,求在已知r个人买了东西的条件下每个人买东西的概率. 分析:二进制枚举个数为r的子集,按定义求即可. #include<cstdio> #includ ...
- uva 11181 - Probability|Given
条件概率公式:P( A|B ) = P( AB ) / P( B ) 表示在事件B发生的前提,事件A发生的可能性: 问题的: 复位事件E:r个人买东西: 事件Ei:文章i个人买东西: 的要求是P( E ...
- UVA 11181 Probability|Given (离散概率)
题意:有n个人去商场,其中每个人都有一个打算买东西的概率P[i].问你最后r个人买了东西的情况下每个人买东西的概率 题解:一脸蒙蔽的题,之前的概率与之后的概率不一样??? 看了白书上的题解才知道了,其 ...
- 【UVA 11181】(条件概率)
题链:https://cn.vjudge.net/problem/UVA-11181 题意 n个人去了超市,已知每个人买东西的概率为p[i],在已知有r个人买了东西的情况下,求实际上每个人买东西的概率 ...
- UVA - 11181 数学
UVA - 11181 题意: n个人去买东西,其中第i个人买东西的概率是p[i],最后只有r个人买了东西,求每个人实际买了东西的概率 代码: //在r个人买东西的概率下每个人买了东西的概率,这是条件 ...
- uva 11346 - Probability(概率)
option=com_onlinejudge&Itemid=8&page=show_problem&problem=2321">题目链接:uva 11346 - ...
随机推荐
- HDU 5694——BD String——————【递归求解】
BD String Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total S ...
- show_space1
CREATE OR REPLACE PROCEDURE show_space1(p_segname IN VARCHAR2, p_owner IN VARCHAR2 DEFAULT 'NTSUSER0 ...
- storm之topology的启动
一个topology的启动包括了三个步骤 1)创建TopologyBuilder,设置输入源,输出源 2)获取config 3)提交topology(这里不考虑LocalCluster本地模式) 以s ...
- tomcat中文请求乱码问题
使用tomcat做服务时,如果发送的url请求中包含中文字符,可能会出现乱码问题:
- 紫书第5章 C++STL
例题 例题5-1 大理石在哪儿(Where is the Marble?,Uva 10474) 主要是熟悉一下sort和lower_bound的用法 关于lower_bound: http://blo ...
- docker 镜像构建上下文理解
原文 写得贼好,特别鸣谢,哈哈 如果注意,会看到 docker build 命令最后有一个 . . . 表示当前目录,而 Dockerfile就在当前目录,因此不少初学者以为这个路径是在指定 Dock ...
- C Primer Plus note2
warning: 'mmin' is used uninitialized in this function [-Wuninitialized]| 编译器出现如上图的警告,是因为变量‘mmin’没有初 ...
- MySQL数据备份与还原(mysqldump)
一 mysqldump指令实现数据备份.mysql指令实现数据还原 经常有朋友问我,DBA到底是做什么的,百科上说:数据库管理员(Database Administrator,简称DBA),是从事管理 ...
- 【译】MapCSS 与 CartoCSS
原文地址: https://gist.github.com/tmcw/4319642 CartoCSS 的作者是通过 Cascadenik 为灵感进而创作的 CartoCSS. CartoCSS 与 ...
- How to Build MySQL from Source Code on Windows & compile MySQL on win7+vs2010
Not counting obtaining the source code, and once you have the prerequisites satisfied, [Windows] use ...