UVa 11181 - Probability|Given(条件概率)
链接:
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2122
题意:
有n个人准备去超市逛,其中第i个人买东西的概率是Pi。逛完以后你得知有r个人买了东西。
根据这一信息,请计算每个人实际买了东西的概率。
输入n(1≤n≤20)和r(0≤r≤n),输出每个人实际买了东西的概率。
分析:
设“r个人买了东西”这个事件为E,“第i个人买东西”这个事件为Ei,则要求的是条件概率P(Ei|E)。
根据条件概率公式,P(Ei|E) = P(EiE) / P(E)。
P(E)依然可以用全概率公式。例如,n=4,r=2,有6种可能:1100, 1010, 1001, 0110, 0101, 0011,
其中1100的概率为P1*P2*(1-P3)*(1-P4),其他类似,设opt[k]表示第k个人是否买东西(1表示买,0表示不买),
则可以用递归的方法枚举恰好有r个opt[k]=1的情况。
如何计算P(EiE)呢?方法一样,只是枚举的时候要保证第opt[i]=1。
用tot表示E的概率,sum[i]表示opt[i]=1的概率之和,则答案为P(EiE)/P(E)=sum[i]/tot。
代码:
import java.io.*;
import java.util.*; public class Main {
static final int UP = 20 + 5;
static int n, r;
static double P[] = new double[UP], sum[] = new double[UP];
static boolean opt[] = new boolean[UP]; static void dfs(int d, int s, double prob) { // d为第几个,s为选了几个,prob为当前概率
if(s > r || d - s > n - r) return; // 选的个数超过了限制或者不选的个数超过了限制
if(d == n) {
sum[n] += prob;
for(int i = 0; i < n; i++) if(opt[i]) sum[i] += prob;
return;
}
opt[d] = true;
dfs(d+1, s+1, prob * P[d]);
opt[d] = false;
dfs(d+1, s, prob * (1-P[d]));
} public static void main(String args[]) {
Scanner cin = new Scanner(new BufferedInputStream(System.in));
for(int cases = 1; ; cases++) {
n = cin.nextInt();
r = cin.nextInt();
if(n == 0) break;
for(int i = 0; i < n; i++) P[i] = cin.nextDouble(); Arrays.fill(sum, 0);
Arrays.fill(opt, false);
dfs(0, 0, 1); System.out.printf("Case %d:\n", cases);
for(int i = 0; i < n; i++)
System.out.printf("%.6f\n", sum[i] / sum[n]);
}
cin.close();
}
}
UVa 11181 - Probability|Given(条件概率)的更多相关文章
- Uva - 11181 Probability|Given (条件概率)
设事件B为一共有r个人买了东西,设事件Ai为第i个人买了东西. 那么这个题目实际上就是求P(Ai|B),而P(Ai|B)=P(AiB)/P(B),其中P(AiB)表示事件Ai与事件B同时发生的概率,同 ...
- 概率论 --- Uva 11181 Probability|Given
Uva 11181 Probability|Given Problem's Link: http://acm.hust.edu.cn/vjudge/problem/viewProblem.acti ...
- uva 11181 - Probability|Given(概率)
题目链接:uva 11181 - Probability|Given 题目大意:有n个人去超市买东西,给出r,每个人买东西的概率是p[i],当有r个人买东西的时候,第i个人恰好买东西的概率. 解题思路 ...
- UVA - 11181 Probability|Given (条件概率)
题意:有n个人,已知每个人买东西的概率,求在已知r个人买了东西的条件下每个人买东西的概率. 分析:二进制枚举个数为r的子集,按定义求即可. #include<cstdio> #includ ...
- uva 11181 - Probability|Given
条件概率公式:P( A|B ) = P( AB ) / P( B ) 表示在事件B发生的前提,事件A发生的可能性: 问题的: 复位事件E:r个人买东西: 事件Ei:文章i个人买东西: 的要求是P( E ...
- UVA 11181 Probability|Given (离散概率)
题意:有n个人去商场,其中每个人都有一个打算买东西的概率P[i].问你最后r个人买了东西的情况下每个人买东西的概率 题解:一脸蒙蔽的题,之前的概率与之后的概率不一样??? 看了白书上的题解才知道了,其 ...
- 【UVA 11181】(条件概率)
题链:https://cn.vjudge.net/problem/UVA-11181 题意 n个人去了超市,已知每个人买东西的概率为p[i],在已知有r个人买了东西的情况下,求实际上每个人买东西的概率 ...
- UVA - 11181 数学
UVA - 11181 题意: n个人去买东西,其中第i个人买东西的概率是p[i],最后只有r个人买了东西,求每个人实际买了东西的概率 代码: //在r个人买东西的概率下每个人买了东西的概率,这是条件 ...
- uva 11346 - Probability(概率)
option=com_onlinejudge&Itemid=8&page=show_problem&problem=2321">题目链接:uva 11346 - ...
随机推荐
- [转]ORA-00979: not a GROUP BY expression报错处理
本文转自:http://blog.itpub.net/29154652/viewspace-772504/ 环境:Oracle Database 11gR2(11.2.0.2) on Linux 故 ...
- Java - 生成keystore
有个需求,说要在生成PDF文件时加上signature.操作PDF容易,用: <dependency> <groupId>com.itextpdf</groupId> ...
- java 并发(五)---AbstractQueuedSynchronizer(2)
文章部分代码和照片来自参考资料 问题 : ConditionObject 的 await 和 signal 方法是如何实现的 ConditonObject ConditionObjec ...
- Rabbit主题交换机
主题交换机类型为:topic. 是直连交换机的一种.只是比直连交换机更灵活,在路由键上引入了通配符的概念 topic交换机支持通配符的路由键. *表示匹配一个词. #匹配所有 生产者 : packag ...
- AngularJS 指令 实现文本水平滚动效果
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- 梯度寻优与logistic算法
一.一些基本概念 最优化:在给定约束之下如何寻求某些因素(的量),以使某一(或某些)指标达到最优.高中学过的线性规划就是一类典型的最优化问题. 凸集:在集合空间中,凸集就是一个向四周凸起的图形.用数学 ...
- 9、springboot之处理静态资源
在springboot项目中的resource根目录下建立三个文件夹static.public.resources 里面都放同样名字的图片 但是图片内容不一样 启动springboot之后输入 htt ...
- linux 安装php扩展swoole redis
本文讲的是已经有redis.so 和swoole.so文件的情况 我的环境是xampp php的扩展目录为 /opt/lampp/lib/php/extensions/no-debug-non-zts ...
- Effective C++ .13使用智能指针来引用资源
#include <iostream> #include <cstdlib> #include <memory> using namespace std; clas ...
- JavaScript switch语句
JavaScriptswitch语句 switch语句用于基于不同的条件来执行不同的动作. JavaScript switch 语句 使用switch语句可以进行多项选择. 语法: switch( 变 ...