Given an integer n, return the number of trailing zeroes in n!.

Note: Your solution should be in logarithmic time complexity.

转自:http://blog.csdn.net/doc_sgl/article/details/42344441

考虑n!的质数因子。后缀0总是由质因子2和质因子5相乘得来的。如果我们可以计数2和5的个数,问题就解决了。考虑下面的例子:

n = 5: 5!的质因子中 (2 * 2 * 2 * 3 * 5)包含一个5和三个2。因而后缀0的个数是1。

n = 11: 11!的质因子中(2^8 * 3^4 * 5^2 * 7)包含两个5和三个2。于是后缀0的个数就是2。

我们很容易观察到质因子中2的个数总是大于等于5的个数。因此只要计数5的个数就可以了。那么怎样计算n!的质因子中所有5的个数呢?一个简单 的方法是计算floor(n/5)。例如,7!有一个5,10!有两个5。除此之外,还有一件事情要考虑。诸如25,125之类的数字有不止一个5。例 如,如果我们考虑28!,我们得到一个额外的5,并且0的总数变成了6。处理这个问题也很简单,首先对n÷5,移除所有的单个5,然后÷25,移除额外的 5,以此类推。

总结:

只有2和5相乘才会出现0,其中整十也可以看做是2和5相乘的结果,所以,可以在n之前看看有多少个2以及多少个5就行了,又发现2的数量一定多于5的个数,于是我们只看n前面有多少个5就行了,于是n/5就得到了5的个数,还有一点要注意的就是25这种,5和5相乘的结果,所以,还要看n/5里面有多少个5,也就相当于看n里面有多少个25,还有125,625.。。

class Solution {
public:
int trailingZeroes(int n) {
int res = ;
while(n)
{
res += n/;
n /= ;
}
return res; }
};

Factorial Trailing Zeroes——数学类的更多相关文章

  1. 【LeetCode】172. Factorial Trailing Zeroes

    Factorial Trailing Zeroes Given an integer n, return the number of trailing zeroes in n!. Note: Your ...

  2. LeetCode Day4——Factorial Trailing Zeroes

    /* * Problem 172: Factorial Trailing Zeroes * Given an integer n, return the number of trailing zero ...

  3. LeetCode Factorial Trailing Zeroes Python

    Factorial Trailing Zeroes Given an integer n, return the number of trailing zeroes in n!. 题目意思: n求阶乘 ...

  4. LeetCode 172. 阶乘后的零(Factorial Trailing Zeroes)

    172. 阶乘后的零 172. Factorial Trailing Zeroes 题目描述 给定一个整数 n,返回 n! 结果尾数中零的数量. LeetCode172. Factorial Trai ...

  5. LeetCode_172. Factorial Trailing Zeroes

    172. Factorial Trailing Zeroes Easy Given an integer n, return the number of trailing zeroes in n!. ...

  6. LeetCode172 Factorial Trailing Zeroes. LeetCode258 Add Digits. LeetCode268 Missing Number

    数学题 172. Factorial Trailing Zeroes Given an integer n, return the number of trailing zeroes in n!. N ...

  7. [LeetCode] Factorial Trailing Zeroes 求阶乘末尾零的个数

    Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in log ...

  8. LeetCode Factorial Trailing Zeroes

    原题链接在这里:https://leetcode.com/problems/factorial-trailing-zeroes/ 求factorial后结尾有多少个0,就是求有多少个2和5的配对. 但 ...

  9. 【原创】leetCodeOj --- Factorial Trailing Zeroes 解题报告

    原题地址: https://oj.leetcode.com/problems/factorial-trailing-zeroes/ 题目内容: Given an integer n, return t ...

随机推荐

  1. Linux之ioctl20160705

    ioctl(fdAcodec, ACODEC_GET_ADCL_VOL, &vol_ctrl)//从内核驱动中获取或者设置数据//内核驱动中也使用ACODEC_GET_ADCL_VOL进行ca ...

  2. angularJS前端分页插件

    首先在项目中引入 分页插件的 js 和 css: 在html页面引入 相关js 和 css: 在控制器中引入分页插件中定义的 module[可以打开pagination.js查看,可以看到 其实,在插 ...

  3. PowerDesigner 技巧【3】

    一.PowerDesigner导出所有SQL脚本: 一般的导出SQL脚本只需要下面两个步骤: 1.database->change current DBMS(选择需要导出的数据库类型): 2.d ...

  4. printk打印机别

    1.查看当前控制台的打印级别 cat /proc/sys/kernel/printk 4    4    1    7 其中第一个“4”表示内核打印函数printk的打印级别,只有级别比他高的信息才能 ...

  5. [洛谷P2051] [AHOI2009]中国象棋

    洛谷题目链接:[AHOI2009]中国象棋 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法 ...

  6. svn: Checksum mismatch while updating 错误

    最近使用svn客户端更新代码的时候出现 Checksum mismatch while updating 的错误 解决办法 在出错文件的目录下,用update to reversion , 先选onl ...

  7. u3d局域网游戏网络(c# socket select 模型)——续

    原文:http://www.cnblogs.com/saucerman/p/5555793.html 因为项目要加语音.语音数据都非常大.所以顺带就把之前写的网络模块一起测试了. 然后发现了一些bug ...

  8. Spring理论基础-控制反转和依赖注入

    第一次了解到控制反转(Inversion of Control)这个概念,是在学习Spring框架的时候.IOC和AOP作为Spring的两大特征,自然是要去好好学学的.而依赖注入(Dependenc ...

  9. Remmarguts' Date(POJ2449+最短路+A*算法)

    题目链接:http://poj.org/problem?id=2449 题目: 题意:求有向图两点间的k短路. 思路:最短路+A*算法 代码实现如下: #include <set> #in ...

  10. POJ 3279 Fliptile ( 开关问题)

    题目链接 Description Farmer John knows that an intellectually satisfied cow is a happy cow who will give ...