二、同步工具类详解

1、Semaphore信号量:跟锁机制存在一定的相似性,semaphore也是一种锁机制,所不同的是,reentrantLock是只允许一个线程获得锁,而信号量持有多个许可(permits),允许多个线程获得许可并执行。可以用来控制同时访问某个特定资源的操作数量,或者同时执行某个指定操作的数量。

示例代码:

 5 public class TIJ_semaphore {
6 public static void main(String[] args) {
7 ExecutorService exec = Executors.newCachedThreadPool();
8 final Semaphore semp = new Semaphore(5); // 5 permits
9
10 for (int index = 0; index < 20; index++) {
11 final int NO = index;
12 Runnable run = new Runnable() {
13 public void run() {
14 try {
// if 1 permit avaliable, thread will get a permits and go; if no permit avaliable, thread will block until 1 avaliable
15 semp.acquire();
16 System.out.println("Accessing: " + NO);
17 Thread.sleep((long) (10000);
18 semp.release();
19 } catch (InterruptedException e) {
20 }
21 }
22 };
23 exec.execute(run);
24 }
25 exec.shutdown();
26 }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

2、CountDownLatch闭锁:允许一个或多个线程一直等待,直到其他线程的操作执行完后再执行。CountDownLatch是通过一个计数器来实现的,计数器的初始值为线程的数量。每当一个线程完成了自己的任务后,计数器的值就会减1。当计数器值到达0时,它表示所有的线程已经完成了任务,然后在闭锁上等待的线程就可以恢复执行任务。

主要方法: 
1. CountDownLatch.await():将某个线程阻塞住,直到计数器count=0才恢复执行。 
2. CountDownLatch.countDown():将计数器count减1。

使用场景: 
1. 实现最大的并行性:有时我们想同时启动多个线程,实现最大程度的并行性。例如,我们想测试一个单例类。如果我们创建一个初始计数为1的CountDownLatch,并让所有线程都在这个锁上等待,那么我们可以很轻松地完成测试。我们只需调用 一次countDown()方法就可以让所有的等待线程同时恢复执行。 
2. 开始执行前等待n个线程完成各自任务:例如应用程序启动类要确保在处理用户请求前,所有N个外部系统已经启动和运行了。 
3. 死锁检测:一个非常方便的使用场景是,你可以使用n个线程访问共享资源,在每次测试阶段的线程数目是不同的,并尝试产生死锁。 
4. 计算并发执行某个任务的耗时。

示例代码:

public class CountDownLatchTest {  

    public void timeTasks(int nThreads, final Runnable task) throws InterruptedException{
final CountDownLatch startGate = new CountDownLatch(1);
final CountDownLatch endGate = new CountDownLatch(nThreads); for(int i = 0; i < nThreads; i++){
Thread t = new Thread(){
public void run(){
try{
startGate.await();
try{
task.run();
}finally{
endGate.countDown();
}
}catch(InterruptedException ignored){ } }
};
t.start();
} long start = System.nanoTime();
System.out.println("打开闭锁");
startGate.countDown();
endGate.await();
long end = System.nanoTime();
System.out.println("闭锁退出,共耗时" + (end-start));
} public static void main(String[] args) throws InterruptedException{
CountDownLatchTest test = new CountDownLatchTest();
test.timeTasks(5, test.new RunnableTask());
} class RunnableTask implements Runnable{ @Override
public void run() {
System.out.println("当前线程为:" + Thread.currentThread().getName()); }
} 执行结果为:
打开闭锁
当前线程为:Thread-0
当前线程为:Thread-3
当前线程为:Thread-2
当前线程为:Thread-4
当前线程为:Thread-1
闭锁退出,共耗时1109195
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55

3、CyclicBarrier栅栏:用于阻塞一组线程直到某个事件发生。所有线程必须同时到达栅栏位置才能继续执行下一步操作,且能够被重置以达到重复利用。而闭锁是一次性对象,一旦进入终止状态,就不能被重置。

示例代码:

public class CyclicBarrierTest {
private final CyclicBarrier barrier;
private final Worker[] workers; public CyclicBarrierTest(){
int count = Runtime.getRuntime().availableProcessors();
this.barrier = new CyclicBarrier(count,
new Runnable(){ @Override
public void run() {
System.out.println("所有线程均到达栅栏位置,开始下一轮计算");
} });
this.workers = new Worker[count];
for(int i = 0; i< count;i++){
workers[i] = new Worker(i);
}
}
private class Worker implements Runnable{
int i; public Worker(int i){
this.i = i;
} @Override
public void run() {
for(int index = 1; index < 3;index++){
System.out.println("线程" + i + "第" + index + "次到达栅栏位置,等待其他线程到达");
try {
//注意是await,而不是wait
barrier.await();
} catch (InterruptedException e) {
e.printStackTrace();
return;
} catch (BrokenBarrierException e) {
e.printStackTrace();
return;
}
}
} } public void start(){
for(int i=0;i<workers.length;i++){
new Thread(workers[i]).start();
}
} public static void main(String[] args){
new CyclicBarrierTest().start();
}
} 执行结果为:
线程0第1次到达栅栏位置,等待其他线程到达
线程1第1次到达栅栏位置,等待其他线程到达
线程2第1次到达栅栏位置,等待其他线程到达
线程3第1次到达栅栏位置,等待其他线程到达
所有线程均到达栅栏位置,开始下一轮计算
线程3第2次到达栅栏位置,等待其他线程到达
线程2第2次到达栅栏位置,等待其他线程到达
线程0第2次到达栅栏位置,等待其他线程到达
线程1第2次到达栅栏位置,等待其他线程到达
所有线程均到达栅栏位置,开始下一轮计算

Java并发包之闭锁/栅栏/信号量的更多相关文章

  1. Java并发包之闭锁/栅栏/信号量(转)

    本文转自http://blog.csdn.net/u010942020/article/details/79352560 感谢作者 一.Java多线程总结: 描述线程的类:Runable和Thread ...

  2. java并发编程笔记3-同步容器&并发容器&闭锁&栅栏&信号量

    一.同步容器: 1.Vector容器实现了List接口,Vector实际上就是一个数组,和ArrayList类似,但是Vector中的方法都是synchronized方法,即进行了同步措施.保证了线程 ...

  3. Java 并发包中的高级同步工具

    Java 并发包中的高级同步工具 Java 中的并发包指的是 java.util.concurrent(简称 JUC)包和其子包下的类和接口,它为 Java 的并发提供了各种功能支持,比如: 提供了线 ...

  4. java并发包&线程池原理分析&锁的深度化

          java并发包&线程池原理分析&锁的深度化 并发包 同步容器类 Vector与ArrayList区别 1.ArrayList是最常用的List实现类,内部是通过数组实现的, ...

  5. Java并发编程(您不知道的线程池操作), 最受欢迎的 8 位 Java 大师,Java并发包中的同步队列SynchronousQueue实现原理

    Java_并发编程培训 java并发程序设计教程 JUC Exchanger 一.概述 Exchanger 可以在对中对元素进行配对和交换的线程的同步点.每个线程将条目上的某个方法呈现给 exchan ...

  6. 深入浅出Java并发包—CountDownLauch原理分析 (转载)

    转载地址:http://yhjhappy234.blog.163.com/blog/static/3163283220135875759265/ CountDownLauch是Java并发包中的一个同 ...

  7. Java并发包源码学习系列:同步组件Semaphore源码解析

    目录 Semaphore概述及案例学习 类图结构及重要字段 void acquire() 非公平 公平策略 void acquire(int permits) void acquireUninterr ...

  8. Java并发包源码学习之AQS框架(四)AbstractQueuedSynchronizer源码分析

    经过前面几篇文章的铺垫,今天我们终于要看看AQS的庐山真面目了,建议第一次看AbstractQueuedSynchronizer 类源码的朋友可以先看下我前面几篇文章: <Java并发包源码学习 ...

  9. Java并发包源码学习之AQS框架(三)LockSupport和interrupt

    接着上一篇文章今天我们来介绍下LockSupport和Java中线程的中断(interrupt). 其实除了LockSupport,Java之初就有Object对象的wait和notify方法可以实现 ...

随机推荐

  1. 比特币编译(Ubuntu 16.04)

    安装比特币需要的所有库 sudo apt-get install build-essential libtool autotools-dev automake pkg-config libssl-de ...

  2. swift中闭包的循环引用

    首先我们先创造一个循环引用 var nameB:(()->())? override func viewDidLoad() { super.viewDidLoad() let bu = UIBu ...

  3. [How to]如何通过xib来自定义UIViewController

    代码:https://github.com/xufeng79x/CreateControllerByXib 1.简介 UIViewController实例可以通过代码.storyborad或者xib方 ...

  4. 19:django 分页

    分页是网站中比较常见的应用,django提供了一些类帮助管理分页的数据,这些类都位于django.core.paginator.py文件里面 分页类 构造函数 class Paginator(obje ...

  5. svn命令行

    svn查看某一版本下的某一文件 svn cat -r 版本号 文件的目录 svn 对比两个版本之间的差别 svn diff -r 新版本:旧版本

  6. Intellij idea的maven依赖图

    Intellij idea下查看maven的依赖图与eclipse有所不同.下面简单介绍一下Intellij下maven的查看使用. 使用场景 当你想查看maven依赖的jar都有哪些,是否有冲突,冲 ...

  7. Python Flask 配置文件

    1. 什么是配置文件? 就是当程序调用的一些参数,文件路径,方法或者类放到一个文件中, 当下次需要修改的一个参数的时候,不用再从所有关联的程序中找到该参数挨个修改, 比较繁琐.像Django中,程序启 ...

  8. OpenCL与CUDA,CPU与GPU

    OpenCL OpenCL(全称Open Computing Language,开放运算语言)是第一个面向异构系统通用目的并行编程的开放式.免费标准,也是一个统一的编程环境,便于软件开发人员为高性能计 ...

  9. AC日记——[HNOI2014]世界树 bzoj 3572

    3572 思路: 虚树+乱搞: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 300005 #define ...

  10. Supervisor-类unix系统下的进程控制工具

    如果你的英文足够好,请看官网的文档:http://supervisord.org/introduction.html 简介: Supervisor 类unix系统下的进程控制工具. 特性: 1.配置简 ...