ZOJ 3644 Kitty's Game(数论+DP)
Description
Kitty is a little cat. She is crazy about a game recently.
There arenscenes in the game(mark from 1 ton). Each scene has a numberpi. Kitty's score will become least_common_multiple(x,pi) when Kitty enter theithscene.xis the score that Kitty had previous. Notice that Kitty will become mad If she go to another scene but the score didn't change.
Kitty is staying in the first scene now(withp1score). Please find out how many paths which can arrive at thenthscene and haskscores at there. Of course, you can't make Kitty mad.
We regard two paths different if and only if the edge sequence is different.
Input
There are multiple test cases. For each test case:
The first line contains three integern(2 ≤n≤ 2000),m(2 ≤m≤ 20000),k(2 ≤k≤ 106). Then followed bymlines. Each line contains two integeru,v(1 ≤u,v≤ n, u ≠ v) indicate we can go tovthscene fromuthscene directly. The last line of each case contains n integerpi(1 ≤pi≤ 106).
Process to the end of input.
Output
One line for each case. The number of paths module 1000000007.
题目大意:有n个点m条无向边,每个点有一个分值p[i],设x为当前分值,每经过一个点,分值就会变成LCM(x, p[i]),若经过一个点的时候分值没有变化,那么这个点不能走。现在要从点1走到点n,要得到k的分值,问有多少种方法。
思路:首先走的每一步都必须是k的约数(不然到达终点的时候不可能得到k),那么走到每个点上至多有sum{k的约数}的分值,把k离散化,k最多有2*sqrt(k)个约数,即2000个。然后开始DP,dp[i][j]表示走到第i个点,得到分值j(离散值),并且能走到终点的方案数。然后记忆化搜索即可。原图有环也无所谓,因为分值每走一步必须要变化,而且只会越来越大,不会走出环来。
代码(120MS):
#include <cstdio>
#include <cstring>
#include <iostream>
#include <map>
using namespace std; typedef long long LL; const int MAXN = ;
const int MAXE = ;
const int MOD = ; map<int, int> mp; int n, m, k, ecnt;
int head[MAXN];
int to[MAXE], next[MAXE];
int dp[MAXN][MAXN], val[MAXN]; void init() {
memset(head, , sizeof(head));
ecnt = ;
} inline void add_edge(int u, int v) {
to[ecnt] = v; next[ecnt] = head[u]; head[u] = ecnt++;
} LL gcd(LL a, LL b) {
return b ? gcd(b, a % b) : a;
} LL lcm(LL a, LL b) {
return a * b / gcd(a, b);
} inline void get_app() {
mp.clear();
int cnt = ;
for(int i = ; i * i <= k; ++i) {
if(k % i != ) continue;
mp[i] = ++cnt;
if(i * i != k) mp[k / i] = ++cnt;
}
} int dfs(int u, LL x) {
if(u == n && x == k) return ;
int now = mp[x];
if(dp[u][now] != -) return dp[u][now];
dp[u][now] = ;
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
if(k % val[v] != ) continue;
LL tmp = lcm(x, val[v]);
if(tmp == x || tmp > k) continue;
dp[u][now] = (dp[u][now] + dfs(v, tmp)) % MOD;
}
return dp[u][now];
} int main() {
while(scanf("%d%d%d", &n, &m, &k) != EOF) {
init();
while(m--) {
int u, v;
scanf("%d%d", &u, &v);
add_edge(u, v);
}
for(int i = ; i <= n; ++i) scanf("%d", &val[i]);
get_app();
memset(dp, , sizeof(dp));
int ans = (k % val[]) ? : dfs(, val[]);
cout<<ans<<endl;
}
}
ZOJ 3644 Kitty's Game(数论+DP)的更多相关文章
- ZOJ 3644 Kitty's Game dfs,记忆化搜索,map映射 难度:2
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4834 从点1出发,假设现在在i,点数为sta,则下一步的点数必然不能是sta的 ...
- 【bzoj1408】[Noi2002]Robot 数论+dp
题目描述 输入 输出 样例输入 3 2 1 3 2 5 1 样例输出 8 6 75 题解 语文题+数论+dp 花了大段讲述什么叫mu,什么叫phi,只是新定义的mu将2看作有平方因子,新定义的phi( ...
- 洛谷$P5366\ [SNOI2017]$遗失的答案 数论+$dp$
正解:数论$dp$ 解题报告: 传送门$QwQ$ 考虑先质因数分解.所以$G$就相当于所有系数取$min$,$L$就相当于所有系数取$max$ 这时候考虑,因为数据范围是$1e8$,$1e8$内最多有 ...
- zoj 3644(dp + 记忆化搜索)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4834 思路:dp[i][j]表示当前节点在i,分数为j的路径条数,从 ...
- ZOJ 3494 (AC自动机+高精度数位DP)
题目链接: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3494 题目大意:给定一些被禁止的BCD码.问指定范围内不含有 ...
- ZOJ 1602 Multiplication Puzzle(区间DP)题解
题意:n个数字的串,每取出一个数字的代价为该数字和左右的乘积(1.n不能取),问最小代价 思路:dp[i][j]表示把i~j取到只剩 i.j 的最小代价. 代码: #include<set> ...
- 数论+DP HDOJ 4345 Permutation
题目传送门 题意:一个置换群,经过最少k次置换后还原.问给一个N个元素,在所有的置换群里,有多少个不同的k. 分析:这道题可以转化成:N = Σ ai ,求LCM ( ai )有多少个不同的值.比如N ...
- POJ 3132 & ZOJ 2822 Sum of Different Primes(dp)
题目链接: POJ:id=3132">http://poj.org/problem?id=3132 ZOJ:http://acm.zju.edu.cn/onlinejudge/show ...
- ZOJ 3802 Easy 2048 Again 状态DP
zoj 上次的月赛题,相当牛的题目啊,根本想不到是状态压缩好吧 有个预先要知道的,即500个16相加那也是不会超过8192,即,合并最多合并到4096,只有2的12次方 所以用状态压缩表示前面有的序列 ...
随机推荐
- Vue--- 一点车项目 连接数据库
Vue--- 一点车项目 连接数据库 创建连接数据库配置 ###导入 const Koa = require('koa'); const Router = require('koa-router') ...
- CF1066CBooks Queries(数组的特殊处理)
题意描述 您需要维护一个数据结构,支持以下三种操作: L id:在现在序列的左边插一个编号为id的物品 R id:在现在序列的右边插一个编号为id的物品 ? id:查询该点左面有几个元素,右面有几个元 ...
- mysql小特性:change buffer
change buffer是在其他数据库中没有的一个概念,说白了就是一块系统表空间分配的空间,针对的对象是辅助索引的叶子节点(为什么不是主键索引?因为主键索引是聚集索引,在磁盘上的排列是有序的,磁盘的 ...
- 09JavaScript函数
函数是由事件驱动的或者当它被调用时执行的可重复使用的代码块. 实例1: <!DOCTYPE html> <html> <head> <meta charset ...
- 配置SpringBoot方便的切换jar和war
配置SpringBoot方便的切换jar和war 网上关于如何切换,其实说的很明确,本文主要通过profile进行快速切换已实现在不同场合下,用不同的打包方式. jar到war修改步骤 pom文件修改 ...
- 使用Hbuilder开发IOS应用上架审核提示请指定用户在位置许可模式警报中使用位置的预定用途。
使用Hbuilder开发IOS应用时,遇到上架App被拒的问题,被拒原因: 你的应用程序使用位置服务,但并没有按照iOS人机界面指南中的要求,在位置模式警报中阐明它的用途. 要解决此问题,请指定用户在 ...
- git创建使用1https://blog.csdn.net/Hanani_Jia/article/details/77950594
这篇文章是我自己写的关于GitHub的内容,从我刚听到这个直到设置成功每一步都有详细的步骤来解释,其中有一些截图或者代码来自于网上. 首先,我先对GitHub来一个简单的介绍,GitHub有一个很强大 ...
- PHP批量清理MIP-cache缓存(内附在线mipcache清理工具)
MIP是什么?我就不多说了把. MIPCache 又是什么? 科普一下:MIPCache 是一套基于代理的 CDN 缓存系统.可用于缓存所有被某度相关页面引用或者从百度相关服务点出的 MIP 页面.当 ...
- Hive(9)-自定义函数
一. 自定义函数分类 当Hive提供的内置函数无法满足你的业务处理需要时,此时就可以考虑使用用户自定义函数. 根据用户自定义函数类别分为以下三种: 1. UDF(User-Defined-Functi ...
- Python系列之入门篇——python2.7.13安装
Python2.7.13 安装 说明 以下所有操作都基于centos6.9 1. Issue zlib zlib-devel是安装setuptools依赖的模块,需要在安装python之前先安装这两个 ...