http://poj.org/problem?id=1178

Description

Centuries ago, King Arthur and the Knights of the Round Table used to meet every year on New Year's Day to celebrate their fellowship. In remembrance of these events, we consider a board game for one player, on which one king and several knight pieces are placed
at random on distinct squares. 

The Board is an 8x8 array of squares. The King can move to any adjacent square, as shown in Figure 2, as long as it does not fall off the board. A Knight can jump as shown in Figure 3, as long as it does not fall off the board. 




During the play, the player can place more than one piece in the same square. The board squares are assumed big enough so that a piece is never an obstacle for other piece to move freely. 

The player's goal is to move the pieces so as to gather them all in the same square, in the smallest possible number of moves. To achieve this, he must move the pieces as prescribed above. Additionally, whenever the king and one or more knights are placed in
the same square, the player may choose to move the king and one of the knights together henceforth, as a single knight, up to the final gathering point. Moving the knight together with the king counts as a single move. 



Write a program to compute the minimum number of moves the player must perform to produce the gathering. 

Input

Your program is to read from standard input. The input contains the initial board configuration, encoded as a character string. The string contains a sequence of up to 64 distinct board positions, being the first one the position of the king and the remaining
ones those of the knights. Each position is a letter-digit pair. The letter indicates the horizontal board coordinate, the digit indicates the vertical board coordinate. 



0 <= number of knights <= 63

Output

Your program is to write to standard output. The output must contain a single line with an integer indicating the minimum number of moves the player must perform to produce the gathering.

Sample Input

D4A3A8H1H8

Sample Output

10
/**
poj 1178 floyd+枚举
题目大意:在一个8*8的棋盘里有一个国王和一些骑士,我们须要把他们送到同一顶点上去,骑士和国王的行动方式如图所看到的。国王能够选择一名骑士作为坐骑。上马后相当和该骑士
一起行动(相当于一个骑士),同一位置能够同一时候有多个骑士和国王。问最少走的步数
解题思路:把8*8棋盘变成0~63的数,Floyd求出随意两点之间的最短路径。8*8枚举就可以。枚举终点,骑士上马点,国王上哪个骑士,终于负责度O(64^4)。
*/
#include <string.h>
#include <algorithm>
#include <iostream>
#include <stdio.h>
using namespace std; char s[105];
int cx[8][2]= {{-2,-1},{-2,1},{-1,-2},{-1,2},{1,-2},{1,2},{2,-1},{2,1}};
int dx[8][2]= {{-1,-1},{-1,0},{-1,1},{0,-1},{0,1},{1,-1},{1,0},{1,1}};
int a[65][65],b[65][65],rking[65],king; bool judge(int i,int j)
{
if(i>=0&&i<8&&j>=0&&j<8)
return true;
return false;
} void init()
{
for(int i=0; i<64; i++)
{
for(int j=0; j<64; j++)
{
if(i==j)
a[i][j]=b[i][j]=0;
else
a[i][j]=b[i][j]=999;
}
}
for(int i=0; i<8; i++)
{
for(int j=0; j<8; j++)
{
for(int k=0; k<8; k++)
{
int x=i+cx[k][0];
int y=j+cx[k][1];
int xx=i+dx[k][0];
int yy=j+dx[k][1];
if(judge(x,y))
{
a[i+j*8][x+y*8]=1;
}
if(judge(xx,yy))
{
b[i+j*8][xx+yy*8]=1;
}
}
}
}
for(int k=0; k<64; k++)
{
for(int i=0; i<64; i++)
{
for(int j=0; j<64; j++)
{
a[i][j]=min(a[i][j],a[i][k]+a[k][j]);
b[i][j]=min(b[i][j],b[i][k]+b[k][j]);
}
}
}
}
int main()
{
init();
while(~scanf("%s",s))
{
int n=strlen(s);
king=s[0]-'A'+(s[1]-'1')*8;
int cnt=0;
for(int i=2; i<n; i+=2)
{
int x=s[i+1]-'1';
int y=s[i]-'A';
rking[cnt++]=x*8+y;
}
int ans=9999999;
for(int i=0;i<64;i++)///终点
{
for(int j=0;j<64;j++)///国王上马点
{
for(int k=0;k<cnt;k++)///国王所上的骑士
{
int sum=0;
for(int l=0;l<cnt;l++)
{
if(l==k)continue;
sum+=a[rking[l]][i];
}
sum+=b[king][j]+a[rking[k]][j]+a[j][i];
ans=min(ans,sum);
}
}
}
printf("%d\n",ans);
}
return 0;
}

poj1178 floyd+枚举的更多相关文章

  1. poj 1161 Floyd+枚举

    题意是: 给出n个点,围成m个区域.从区域到另一个区域间需穿过至少一条边(若两区域相邻)——边连接着两点. 给出这么一幅图,并给出一些点,问从这些点到同一个区域的穿过边数最小值. 解题思路如下: 将区 ...

  2. POJ 2139 Six Degrees of Cowvin Bacon (Floyd)

    题意:如果两头牛在同一部电影中出现过,那么这两头牛的度就为1, 如果这两头牛a,b没有在同一部电影中出现过,但a,b分别与c在同一部电影中出现过,那么a,b的度为2.以此类推,a与b之间有n头媒介牛, ...

  3. floyd最短路

    floyd可以在O(n^3)的时间复杂度,O(n^2)的空间复杂度下求解正权图中任意两点间的最短路长度. 本质是动态规划. 定义f[k][i][j]表示从i出发,途中只允许经过编号小于等于k的点时的最 ...

  4. ZOJ 1232 【灵活运用FLOYD】 【图DP】

    题意: copy自http://blog.csdn.net/monkey_little/article/details/6637805 有A个村子和B个城堡,村子标号是1~A,城堡标号是A+1~B.马 ...

  5. 简单的floyd——初学

     前言: (摘自https://www.cnblogs.com/aininot260/p/9388103.html): 在最短路问题中,如果我们面对的是稠密图(十分稠密的那种,比如说全连接图),计算多 ...

  6. 套题T3

    秋实大哥与线段树 Time Limit: 3000/1000MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others) Submit  ...

  7. bzoj千题计划123:bzoj1027: [JSOI2007]合金

    http://www.lydsy.com/JudgeOnline/problem.php?id=1027 因为x+y+z=1,所以z=1-x-y 第三维可以忽略 将x,y 看做 平面上的点 简化问题: ...

  8. code1167 树网的核

    floyd+枚举 看点: 1.floyd同时用数组p记录转移节点k,这样知道线段的端点u v就可以得到整条线段 2.任意一点c到线段a b的距离=(d[a][c]+d[c][b]-d[a][b])/2 ...

  9. APIO2017

    商旅 在广阔的澳大利亚内陆地区长途跋涉后,你孤身一人带着一个背包来到了科巴.你被这个城市发达而美丽的市场所 深深吸引,决定定居于此,做一个商人.科巴有个集市,集市用从1到N的整数编号,集市之间通过M条 ...

随机推荐

  1. 洛谷P2127 序列排序 [贪心]

    题目传送门 题目描述 小C有一个N个数的整数序列,这个序列的中的数两两不同.小C每次可以交换序列中的任意两个数,代价为这两个数之和.小C希望将整个序列升序排序,问小C需要的最小代价是多少? 输入输出格 ...

  2. python实现RabbitMQ同步跟异步消费模型

    1,消息推送类 import pika # 同步消息推送类 class RabbitPublisher(object): # 传入RabbitMQ的ip,用户名,密码,实例化一个管道 def __in ...

  3. Vue 2.0 Application Sample

    ===搭建Demo=== http://blog.csdn.net/wangjiaohome/article/details/51728217 ===单页Application=== http://b ...

  4. 洛谷——P1104 生日

    P1104 生日 题目描述 cjf君想调查学校OI组每个同学的生日,并按照从大到小的顺序排序.但cjf君最近作业很多,没有时间,所以请你帮她排序. 输入输出格式 输入格式: 有2行, 第1行为OI组总 ...

  5. APK Develop——SMS Timer

    SMS Timer APK 描述: 在设定时间后向设定手机号码发送设定的内容的短信. 权限获取: <manifest xmlns:android="http://schemas.and ...

  6. HDU 4655 Cut Pieces(2013多校6 1001题 简单数学题)

    Cut Pieces Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)Total ...

  7. Sys.dm_os_wait_stats Sys.dm_performance_counters

    wait_type waiting_tasks_count wait_time_ms max_wait_time_ms signal_wait_time_ms MISCELLANEOUS 0 0 0 ...

  8. [译]SQL数据库迁移:从低版到高版本

    我见过太多的数据库管理员花大量的时间在数据库迁移上,即便在客户的实际环境亦是如此.由于微软频繁的发布新版,基于业务和客户的要求,应用服务不得不同时升级.当然,还有许多用户仍在使用SQL Server ...

  9. In c++ access control works on per-class basis not on per-object basis.

    #ifndef MYTIME_H #define MYTIME_H class MyTime { private: int m_hour; int m_minute; public: MyTime() ...

  10. 最快的csv文件入到数据库的方法

    最快的csv文件入到数据库的方法:EXEC master.sys.sp_configure 'show advanced options', 1 ; RECONFIGURE ; EXEC master ...