[莫队算法 线段树 斐波那契 暴力] Codeforces 633H Fibonacci-ish II
题目大意:给出一个长度为n的数列a。
对于一个询问lj和rj。将a[lj]到a[rj]从小到大排序后并去重。设得到的新数列为b,长度为k,求F1*b1+F2*b2+F3*b3+...+Fk*bk。当中F为斐波那契数列。F1=F2=1。对每一个询问输出答案模m。
区间查询离线 用莫队算法
开棵权值线段树,然后用斐波那契的性质update
F(n+m)=F(n+1)*F(m)+F(n)*F(m-1);
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std; inline char nc()
{
static char buf[100000],*p1=buf,*p2=buf;
if (p1==p2) { p2=(p1=buf)+fread(buf,1,100000,stdin); if (p1==p2) return EOF; }
return *p1++;
} inline void read(int &x)
{
char c=nc(),b=1;
for (;!(c>='0' && c<='9');c=nc()) if (c=='-') b=-1;
for (x=0;c>='0' && c<='9';x=x*10+c-'0',c=nc()); x*=b;
} int P;
int sx[30005];
int icnt; inline int Bin(int x){
return lower_bound(sx+1,sx+icnt+1,x)-sx;
} struct SEGTREE{
struct node{
int k;
int fk,fk_1;
int a1,a2;
friend node operator + (node &A,node &B){
if (!A.k) return B;
if (!B.k) return A;
node ret;
ret.k=A.k+B.k;
(ret.fk=(A.fk+A.fk_1)*B.fk+A.fk*B.fk_1)%=P;
(ret.fk_1=A.fk*B.fk+A.fk_1*B.fk_1)%=P;
ret.a1=A.a1;
(ret.a1+=A.fk*B.a2+A.fk_1*B.a1)%=P;
ret.a2=A.a2;
(ret.a2+=(A.fk+A.fk_1)*B.a2+A.fk*B.a1)%=P;
return ret;
}
};
node T[120005];
int cnt[120005];
int M,TH;
inline void Build(int n){
for (M=1,TH=0;M<n+2;M<<=1,TH++);
}
inline int Query(){
return T[1].a1;
}
inline void Change(int s,int r){
s+=M;
if (r==1)
{
cnt[s]++;
if (cnt[s]==1)
{
T[s].k=1;
T[s].fk=1;
T[s].fk_1=0;
(T[s].a1=sx[s-M])%=P;
(T[s].a2=sx[s-M])%=P;
while (s>>=1)
T[s]=T[s<<1]+T[s<<1|1];
}
}
else if (r==-1)
{
cnt[s]--;
if (cnt[s]==0)
{
T[s].k=0;
T[s].fk=0;
T[s].fk_1=0;
T[s].a1=0;
T[s].a2=0;
while (s>>=1)
T[s]=T[s<<1]+T[s<<1|1];
}
}
}
}SEG; int n,Q,B;
int a[30005],ans[30005]; struct event{
int x,y,lpos;
int idx;
bool operator < (const event &B) const{
return lpos==B.lpos?y<B.y:lpos<B.lpos;
}
}eve[30005]; inline void Mos()
{
int l=1,r=0;
for (int i=1;i<=Q;i++)
{
while (r<eve[i].y) SEG.Change(Bin(a[++r]),1);
while (r>eve[i].y) SEG.Change(Bin(a[r--]),-1);
while (l<eve[i].x) SEG.Change(Bin(a[l++]),-1);
while (l>eve[i].x) SEG.Change(Bin(a[--l]),1);
ans[eve[i].idx]=SEG.Query();
}
} int main()
{
freopen("t.in","r",stdin);
freopen("t.out","w",stdout);
read(n); read(P); B=sqrt(n);
for (int i=1;i<=n;i++)
read(a[i]),sx[++icnt]=a[i];
sort(sx+1,sx+icnt+1);
icnt=unique(sx+1,sx+icnt+1)-sx-1;
SEG.Build(icnt);
read(Q);
for (int i=1;i<=Q;i++)
{
read(eve[i].x); read(eve[i].y);
eve[i].lpos=(eve[i].x-1)/B+1; eve[i].idx=i;
}
sort(eve+1,eve+Q+1);
Mos();
for (int i=1;i<=Q;i++)
printf("%d\n",ans[i]);
return 0;
}
然而出题人太奇妙,这样的做法常数极大,还是暴力短小精悍
#include<bits/stdc++.h>
using namespace std;
const int maxn = 3e4+5;
pair<int,int> a[maxn];
int ans[maxn],step[maxn],f[maxn],l[maxn],r[maxn],last[maxn]; int main()
{
freopen("t.in","r",stdin);
freopen("t1.out","w",stdout);
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d",&a[i].first),a[i].second=i;
sort(a+1,a+1+n);
f[0]=1,f[1]=1;
for(int i=2;i<=n;i++)
f[i]=(f[i-1]+f[i-2])%m;
int q;scanf("%d",&q);
for(int i=1;i<=q;i++)
{
scanf("%d%d",&l[i],&r[i]);
last[i]=-1;
}
for(int i=1;i<=n;i++)
{
int d = a[i].first % m;
for(int j=1;j<=q;j++)
{
if(a[i].second<l[j]||a[i].second>r[j])continue;
if(a[i].first==last[j])continue;
ans[j]=(ans[j]+f[step[j]++]*d)%m;
last[j]=a[i].first;
}
}
for(int i=1;i<=q;i++)
printf("%d\n",ans[i]);
}
[莫队算法 线段树 斐波那契 暴力] Codeforces 633H Fibonacci-ish II的更多相关文章
- [Codeforces 316E3]Summer Homework(线段树+斐波那契数列)
[Codeforces 316E3]Summer Homework(线段树+斐波那契数列) 顺便安利一下这个博客,给了我很大启发(https://gaisaiyuno.github.io/) 题面 有 ...
- Codeforces 446-C DZY Loves Fibonacci Numbers 同余 线段树 斐波那契数列
C. DZY Loves Fibonacci Numbers time limit per test 4 seconds memory limit per test 256 megabytes inp ...
- 【CF446C】DZY Loves Fibonacci Numbers (线段树 + 斐波那契数列)
Description 看题戳我 给你一个序列,要求支持区间加斐波那契数列和区间求和.\(~n \leq 3 \times 10 ^ 5, ~fib_1 = fib_2 = 1~\). Solut ...
- hdu 4983 线段树+斐波那契数
http://acm.hdu.edu.cn/showproblem.php?pid=4893 三种操作: 1 k d, 修改k的为值增加d 2 l r, 查询l到r的区间和 3 l r, 从l到r区间 ...
- CF633H Fibonacci-ish II 莫队、线段树、矩阵乘法
传送门 这题除了暴力踩标程和正解卡常数以外是道很好的题目 首先看到我们要求的东西与\(Fibonacci\)有关,考虑矩阵乘法进行维护.又看到\(n \leq 30000\),这告诉我们正解算法其实比 ...
- SPOJ DQUERY - D-query (莫队算法|主席树|离线树状数组)
DQUERY - D-query Given a sequence of n numbers a1, a2, ..., an and a number of d-queries. A d-query ...
- Python开发【算法】:斐波那契数列两种时间复杂度
斐波那契数列 概述: 斐波那契数列,又称黄金分割数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1, ...
- 算法笔记_001:斐波那契数的多种解法(Java)
本篇文章解决的问题来源于算法设计与分析课程的课堂作业,主要是运用多种方法来计算斐波那契数.具体问题及解法如下: 一.问题1: 问题描述:利用迭代算法寻找不超过编程环境能够支持的最大整数的斐波那契数是第 ...
- hdu 4099 字典树 + 斐波那契
题意: 给你一个串(最长40位)问你这个串是斐波那契F(n) n <= 99999中的那个数的前缀,如果存在多个输出最小的n否则输出-1. 思路: 给的串最长40位,那 ...
随机推荐
- java.util.regex包下的Pattern和Matcher详解(正则匹配)
java正则表达式通过java.util.regex包下的Pattern类与Matcher类实现(建议在阅读本文时,打开java API文档,当介绍到哪个方法时,查看java API中的方法说明,效果 ...
- JTree 常用方法
package com.swing.demo; import java.awt.Component; import java.awt.event.MouseAdapter; import java.a ...
- application.xml
application.xml Deployment Descriptor Elements The following sections describe the application.xml f ...
- 子查询在INSERT语句中的应用
在使用INSERT语句的时候,一般都是使用它向数据库中一条条的插入数据,比如: INSERT INTO MyTable(FId,FName,FAge)VALUES(1,"John" ...
- python正则表达式中的分组 group
维基百科:http://wiki.ubuntu.org.cn/Python%E6%AD%A3%E5%88%99%E8%A1%A8%E8%BE%BE%E5%BC%8F%E6%93%8D%E4%BD%9C ...
- 内存分哪些区 C++,ios,java
韩梦飞沙 yue31313 韩亚飞 han_meng_fei_sha 313134555@qq.com C/C++编译的程序占用的内存分为以下几个部分 1.栈区(stack)—由编译器自动分配释放,存 ...
- canvas元素内容生成图片
转自https://segmentfault.com/a/1190000003853394 想要将canvas元素当前显示的内容生成为图像文件,我们首先要获取canvas中的数据,在HTML5 < ...
- 初见Python<1>:基础语法
1.两个整数相除,计算结果的小数部分被截除,结果仍然是一个整数: 如:1/2=0 2.整数和浮点数相除.或者浮点数之间相除,结果有小数部分,仍然是一个浮点数: 如:1/2.0=0.5 1.0/2=0 ...
- codevs 1014 装箱问题 2001年NOIP全国联赛普及组
题目描述 Description 有一个箱子容量为V(正整数,0<=V<=20000),同时有n个物品(0<n<=30),每个物品有一个体积(正整数). 要求n个物品中,任取若 ...
- [CF600E]Dsu on tree
题意:树上每个点都有颜色,称一个颜色占领一棵子树,当且仅当没有别的颜色在这棵子树内的数量比它多.求所有子树的占领颜色之和.题解:最显然的是DFS序+主席树或莫队,这里使用Dsu on tree. 每次 ...