题目大意:给出一个长度为n的数列a。

对于一个询问lj和rj。将a[lj]到a[rj]从小到大排序后并去重。设得到的新数列为b,长度为k,求F1*b1+F2*b2+F3*b3+...+Fk*bk。当中F为斐波那契数列。F1=F2=1。对每一个询问输出答案模m。

区间查询离线 用莫队算法

开棵权值线段树,然后用斐波那契的性质update

F(n+m)=F(n+1)*F(m)+F(n)*F(m-1);

#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std; inline char nc()
{
static char buf[100000],*p1=buf,*p2=buf;
if (p1==p2) { p2=(p1=buf)+fread(buf,1,100000,stdin); if (p1==p2) return EOF; }
return *p1++;
} inline void read(int &x)
{
char c=nc(),b=1;
for (;!(c>='0' && c<='9');c=nc()) if (c=='-') b=-1;
for (x=0;c>='0' && c<='9';x=x*10+c-'0',c=nc()); x*=b;
} int P;
int sx[30005];
int icnt; inline int Bin(int x){
return lower_bound(sx+1,sx+icnt+1,x)-sx;
} struct SEGTREE{
struct node{
int k;
int fk,fk_1;
int a1,a2;
friend node operator + (node &A,node &B){
if (!A.k) return B;
if (!B.k) return A;
node ret;
ret.k=A.k+B.k;
(ret.fk=(A.fk+A.fk_1)*B.fk+A.fk*B.fk_1)%=P;
(ret.fk_1=A.fk*B.fk+A.fk_1*B.fk_1)%=P;
ret.a1=A.a1;
(ret.a1+=A.fk*B.a2+A.fk_1*B.a1)%=P;
ret.a2=A.a2;
(ret.a2+=(A.fk+A.fk_1)*B.a2+A.fk*B.a1)%=P;
return ret;
}
};
node T[120005];
int cnt[120005];
int M,TH;
inline void Build(int n){
for (M=1,TH=0;M<n+2;M<<=1,TH++);
}
inline int Query(){
return T[1].a1;
}
inline void Change(int s,int r){
s+=M;
if (r==1)
{
cnt[s]++;
if (cnt[s]==1)
{
T[s].k=1;
T[s].fk=1;
T[s].fk_1=0;
(T[s].a1=sx[s-M])%=P;
(T[s].a2=sx[s-M])%=P;
while (s>>=1)
T[s]=T[s<<1]+T[s<<1|1];
}
}
else if (r==-1)
{
cnt[s]--;
if (cnt[s]==0)
{
T[s].k=0;
T[s].fk=0;
T[s].fk_1=0;
T[s].a1=0;
T[s].a2=0;
while (s>>=1)
T[s]=T[s<<1]+T[s<<1|1];
}
}
}
}SEG; int n,Q,B;
int a[30005],ans[30005]; struct event{
int x,y,lpos;
int idx;
bool operator < (const event &B) const{
return lpos==B.lpos?y<B.y:lpos<B.lpos;
}
}eve[30005]; inline void Mos()
{
int l=1,r=0;
for (int i=1;i<=Q;i++)
{
while (r<eve[i].y) SEG.Change(Bin(a[++r]),1);
while (r>eve[i].y) SEG.Change(Bin(a[r--]),-1);
while (l<eve[i].x) SEG.Change(Bin(a[l++]),-1);
while (l>eve[i].x) SEG.Change(Bin(a[--l]),1);
ans[eve[i].idx]=SEG.Query();
}
} int main()
{
freopen("t.in","r",stdin);
freopen("t.out","w",stdout);
read(n); read(P); B=sqrt(n);
for (int i=1;i<=n;i++)
read(a[i]),sx[++icnt]=a[i];
sort(sx+1,sx+icnt+1);
icnt=unique(sx+1,sx+icnt+1)-sx-1;
SEG.Build(icnt);
read(Q);
for (int i=1;i<=Q;i++)
{
read(eve[i].x); read(eve[i].y);
eve[i].lpos=(eve[i].x-1)/B+1; eve[i].idx=i;
}
sort(eve+1,eve+Q+1);
Mos();
for (int i=1;i<=Q;i++)
printf("%d\n",ans[i]);
return 0;
}

然而出题人太奇妙,这样的做法常数极大,还是暴力短小精悍

#include<bits/stdc++.h>
using namespace std;
const int maxn = 3e4+5;
pair<int,int> a[maxn];
int ans[maxn],step[maxn],f[maxn],l[maxn],r[maxn],last[maxn]; int main()
{
freopen("t.in","r",stdin);
freopen("t1.out","w",stdout);
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d",&a[i].first),a[i].second=i;
sort(a+1,a+1+n);
f[0]=1,f[1]=1;
for(int i=2;i<=n;i++)
f[i]=(f[i-1]+f[i-2])%m;
int q;scanf("%d",&q);
for(int i=1;i<=q;i++)
{
scanf("%d%d",&l[i],&r[i]);
last[i]=-1;
}
for(int i=1;i<=n;i++)
{
int d = a[i].first % m;
for(int j=1;j<=q;j++)
{
if(a[i].second<l[j]||a[i].second>r[j])continue;
if(a[i].first==last[j])continue;
ans[j]=(ans[j]+f[step[j]++]*d)%m;
last[j]=a[i].first;
}
}
for(int i=1;i<=q;i++)
printf("%d\n",ans[i]);
}

[莫队算法 线段树 斐波那契 暴力] Codeforces 633H Fibonacci-ish II的更多相关文章

  1. [Codeforces 316E3]Summer Homework(线段树+斐波那契数列)

    [Codeforces 316E3]Summer Homework(线段树+斐波那契数列) 顺便安利一下这个博客,给了我很大启发(https://gaisaiyuno.github.io/) 题面 有 ...

  2. Codeforces 446-C DZY Loves Fibonacci Numbers 同余 线段树 斐波那契数列

    C. DZY Loves Fibonacci Numbers time limit per test 4 seconds memory limit per test 256 megabytes inp ...

  3. 【CF446C】DZY Loves Fibonacci Numbers (线段树 + 斐波那契数列)

    Description ​ 看题戳我 给你一个序列,要求支持区间加斐波那契数列和区间求和.\(~n \leq 3 \times 10 ^ 5, ~fib_1 = fib_2 = 1~\). Solut ...

  4. hdu 4983 线段树+斐波那契数

    http://acm.hdu.edu.cn/showproblem.php?pid=4893 三种操作: 1 k d, 修改k的为值增加d 2 l r, 查询l到r的区间和 3 l r, 从l到r区间 ...

  5. CF633H Fibonacci-ish II 莫队、线段树、矩阵乘法

    传送门 这题除了暴力踩标程和正解卡常数以外是道很好的题目 首先看到我们要求的东西与\(Fibonacci\)有关,考虑矩阵乘法进行维护.又看到\(n \leq 30000\),这告诉我们正解算法其实比 ...

  6. SPOJ DQUERY - D-query (莫队算法|主席树|离线树状数组)

    DQUERY - D-query Given a sequence of n numbers a1, a2, ..., an and a number of d-queries. A d-query ...

  7. Python开发【算法】:斐波那契数列两种时间复杂度

    斐波那契数列 概述: 斐波那契数列,又称黄金分割数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1, ...

  8. 算法笔记_001:斐波那契数的多种解法(Java)

    本篇文章解决的问题来源于算法设计与分析课程的课堂作业,主要是运用多种方法来计算斐波那契数.具体问题及解法如下: 一.问题1: 问题描述:利用迭代算法寻找不超过编程环境能够支持的最大整数的斐波那契数是第 ...

  9. hdu 4099 字典树 + 斐波那契

    题意:       给你一个串(最长40位)问你这个串是斐波那契F(n)  n <= 99999中的那个数的前缀,如果存在多个输出最小的n否则输出-1. 思路:       给的串最长40位,那 ...

随机推荐

  1. 一款你不容错过的Laravel后台管理扩展包 —— Voyager

    http://laravelacademy.org/post/6401.html  Posted on 2016年11月1日 by  学院君 1.简介 Voyager是一个你不容错过的Laravel后 ...

  2. [js] 数据结构

    var dic = {"127.0.0.1":{"1440":[["keyx","keyy","clix&qu ...

  3. 【转载】Scroller源码解析

    原文地址:https://github.com/Skykai521/AndroidSdkSourceAnalysis/blob/master/article/Scroller%E6%BA%90%E7% ...

  4. Codeforces Round #274 (Div. 2) Riding in a Lift(DP 前缀和)

    Riding in a Lift time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  5. 20172333 2017-2018-2 《Java程序设计》第2周学习总结

    20172333 2016-2017-2 <Java程序设计>第2周学习总结 教材学习内容总结 1.了解print与println的用法区别. 2.有关于"+"的基本用 ...

  6. 通过LoadBalancerClient获取所有服务列表的IP

    说明:LoadBalanced采用轮训的方式请求服务提供者,但是如果针对某些业务需要精确到某个服务提供者或者遍历所有的服务提供者,那么可以通过LoadBalancerClient去获得. 参考: ht ...

  7. Nand Flash与Nor

    转:http://www.360doc.com/content/11/1215/15/1299815_172458274.shtml Flash经常在一些地方被提到,一直没认真去理解它们的区别,因此, ...

  8. iOS 捕获程序崩溃日志

    iOS开发中遇到程序崩溃是很正常的事情,如何在程序崩溃时捕获到异常信息并通知开发者? 下面就介绍如何在iOS中实现: 1. 在程序启动时加上一个异常捕获监听,用来处理程序崩溃时的回调动作 NSSetU ...

  9. 三.rocketmq-console

    ⦁    rocketmq-console来源于https://github.com/rocketmq/rocketmq-console 1.配置IP 2.启动运行:出现此信息则表示成功  访问:in ...

  10. android 开源项目集合

    http://p.codekk.com/ http://www.apkbus.com/code.php http://androidxref.com/ https://www.androidos.ne ...