[莫队算法 线段树 斐波那契 暴力] Codeforces 633H Fibonacci-ish II
题目大意:给出一个长度为n的数列a。
对于一个询问lj和rj。将a[lj]到a[rj]从小到大排序后并去重。设得到的新数列为b,长度为k,求F1*b1+F2*b2+F3*b3+...+Fk*bk。当中F为斐波那契数列。F1=F2=1。对每一个询问输出答案模m。
区间查询离线 用莫队算法
开棵权值线段树,然后用斐波那契的性质update
F(n+m)=F(n+1)*F(m)+F(n)*F(m-1);
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std; inline char nc()
{
static char buf[100000],*p1=buf,*p2=buf;
if (p1==p2) { p2=(p1=buf)+fread(buf,1,100000,stdin); if (p1==p2) return EOF; }
return *p1++;
} inline void read(int &x)
{
char c=nc(),b=1;
for (;!(c>='0' && c<='9');c=nc()) if (c=='-') b=-1;
for (x=0;c>='0' && c<='9';x=x*10+c-'0',c=nc()); x*=b;
} int P;
int sx[30005];
int icnt; inline int Bin(int x){
return lower_bound(sx+1,sx+icnt+1,x)-sx;
} struct SEGTREE{
struct node{
int k;
int fk,fk_1;
int a1,a2;
friend node operator + (node &A,node &B){
if (!A.k) return B;
if (!B.k) return A;
node ret;
ret.k=A.k+B.k;
(ret.fk=(A.fk+A.fk_1)*B.fk+A.fk*B.fk_1)%=P;
(ret.fk_1=A.fk*B.fk+A.fk_1*B.fk_1)%=P;
ret.a1=A.a1;
(ret.a1+=A.fk*B.a2+A.fk_1*B.a1)%=P;
ret.a2=A.a2;
(ret.a2+=(A.fk+A.fk_1)*B.a2+A.fk*B.a1)%=P;
return ret;
}
};
node T[120005];
int cnt[120005];
int M,TH;
inline void Build(int n){
for (M=1,TH=0;M<n+2;M<<=1,TH++);
}
inline int Query(){
return T[1].a1;
}
inline void Change(int s,int r){
s+=M;
if (r==1)
{
cnt[s]++;
if (cnt[s]==1)
{
T[s].k=1;
T[s].fk=1;
T[s].fk_1=0;
(T[s].a1=sx[s-M])%=P;
(T[s].a2=sx[s-M])%=P;
while (s>>=1)
T[s]=T[s<<1]+T[s<<1|1];
}
}
else if (r==-1)
{
cnt[s]--;
if (cnt[s]==0)
{
T[s].k=0;
T[s].fk=0;
T[s].fk_1=0;
T[s].a1=0;
T[s].a2=0;
while (s>>=1)
T[s]=T[s<<1]+T[s<<1|1];
}
}
}
}SEG; int n,Q,B;
int a[30005],ans[30005]; struct event{
int x,y,lpos;
int idx;
bool operator < (const event &B) const{
return lpos==B.lpos?y<B.y:lpos<B.lpos;
}
}eve[30005]; inline void Mos()
{
int l=1,r=0;
for (int i=1;i<=Q;i++)
{
while (r<eve[i].y) SEG.Change(Bin(a[++r]),1);
while (r>eve[i].y) SEG.Change(Bin(a[r--]),-1);
while (l<eve[i].x) SEG.Change(Bin(a[l++]),-1);
while (l>eve[i].x) SEG.Change(Bin(a[--l]),1);
ans[eve[i].idx]=SEG.Query();
}
} int main()
{
freopen("t.in","r",stdin);
freopen("t.out","w",stdout);
read(n); read(P); B=sqrt(n);
for (int i=1;i<=n;i++)
read(a[i]),sx[++icnt]=a[i];
sort(sx+1,sx+icnt+1);
icnt=unique(sx+1,sx+icnt+1)-sx-1;
SEG.Build(icnt);
read(Q);
for (int i=1;i<=Q;i++)
{
read(eve[i].x); read(eve[i].y);
eve[i].lpos=(eve[i].x-1)/B+1; eve[i].idx=i;
}
sort(eve+1,eve+Q+1);
Mos();
for (int i=1;i<=Q;i++)
printf("%d\n",ans[i]);
return 0;
}
然而出题人太奇妙,这样的做法常数极大,还是暴力短小精悍
#include<bits/stdc++.h>
using namespace std;
const int maxn = 3e4+5;
pair<int,int> a[maxn];
int ans[maxn],step[maxn],f[maxn],l[maxn],r[maxn],last[maxn]; int main()
{
freopen("t.in","r",stdin);
freopen("t1.out","w",stdout);
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d",&a[i].first),a[i].second=i;
sort(a+1,a+1+n);
f[0]=1,f[1]=1;
for(int i=2;i<=n;i++)
f[i]=(f[i-1]+f[i-2])%m;
int q;scanf("%d",&q);
for(int i=1;i<=q;i++)
{
scanf("%d%d",&l[i],&r[i]);
last[i]=-1;
}
for(int i=1;i<=n;i++)
{
int d = a[i].first % m;
for(int j=1;j<=q;j++)
{
if(a[i].second<l[j]||a[i].second>r[j])continue;
if(a[i].first==last[j])continue;
ans[j]=(ans[j]+f[step[j]++]*d)%m;
last[j]=a[i].first;
}
}
for(int i=1;i<=q;i++)
printf("%d\n",ans[i]);
}
[莫队算法 线段树 斐波那契 暴力] Codeforces 633H Fibonacci-ish II的更多相关文章
- [Codeforces 316E3]Summer Homework(线段树+斐波那契数列)
[Codeforces 316E3]Summer Homework(线段树+斐波那契数列) 顺便安利一下这个博客,给了我很大启发(https://gaisaiyuno.github.io/) 题面 有 ...
- Codeforces 446-C DZY Loves Fibonacci Numbers 同余 线段树 斐波那契数列
C. DZY Loves Fibonacci Numbers time limit per test 4 seconds memory limit per test 256 megabytes inp ...
- 【CF446C】DZY Loves Fibonacci Numbers (线段树 + 斐波那契数列)
Description 看题戳我 给你一个序列,要求支持区间加斐波那契数列和区间求和.\(~n \leq 3 \times 10 ^ 5, ~fib_1 = fib_2 = 1~\). Solut ...
- hdu 4983 线段树+斐波那契数
http://acm.hdu.edu.cn/showproblem.php?pid=4893 三种操作: 1 k d, 修改k的为值增加d 2 l r, 查询l到r的区间和 3 l r, 从l到r区间 ...
- CF633H Fibonacci-ish II 莫队、线段树、矩阵乘法
传送门 这题除了暴力踩标程和正解卡常数以外是道很好的题目 首先看到我们要求的东西与\(Fibonacci\)有关,考虑矩阵乘法进行维护.又看到\(n \leq 30000\),这告诉我们正解算法其实比 ...
- SPOJ DQUERY - D-query (莫队算法|主席树|离线树状数组)
DQUERY - D-query Given a sequence of n numbers a1, a2, ..., an and a number of d-queries. A d-query ...
- Python开发【算法】:斐波那契数列两种时间复杂度
斐波那契数列 概述: 斐波那契数列,又称黄金分割数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1, ...
- 算法笔记_001:斐波那契数的多种解法(Java)
本篇文章解决的问题来源于算法设计与分析课程的课堂作业,主要是运用多种方法来计算斐波那契数.具体问题及解法如下: 一.问题1: 问题描述:利用迭代算法寻找不超过编程环境能够支持的最大整数的斐波那契数是第 ...
- hdu 4099 字典树 + 斐波那契
题意: 给你一个串(最长40位)问你这个串是斐波那契F(n) n <= 99999中的那个数的前缀,如果存在多个输出最小的n否则输出-1. 思路: 给的串最长40位,那 ...
随机推荐
- Linux搭建主从数据库服务器(主从复制)
配置主机数据库: 1.克隆linux操作系统 2.修改Linux系统主机IP地址 主机IP:192.168.247.150 从机IP:192.168.247.151 3.通过xshell连接Maste ...
- Django CRM查询 XXX.object.filter() 常用用法总结
__gt 大于 __gte 大于等于 User.objects.filter(age__gt=10) // 查询年龄大于10岁的用户 User.objects.filter(age__gte=10) ...
- 17-7-25-js记录
先说明下为什么说好每天一更,周五周六周日都没有更新.因为在周五的时候,上司主动找我谈了转正后的工资4-4.5K.本来想好是6K的,后来打听了一圈公司的小伙伴,都是5-5.5,我就把自己定到了5K.万万 ...
- [Arc062] Painting Graphs with AtCoDeer
[Arc062] Painting Graphs with AtCoDeer Description 给定一张N点M边的无向图,每条边要染一个编号在1到K的颜色.你可以对一张染色了的图进行若干次操作, ...
- 【虚树】hdu6161 Big binary tree
题意:一棵n个结点的完全二叉树,初始i号结点的权值为i.有两种操作:单点修改:询问经过某个结点的路径中,权值和最大的路径的权值和是多少. 修改的时候,暴力修改到根节点的路径上的点的f(x)即可. 跟虚 ...
- 【线性筛】【质因数分解】【约数个数定理】hdu6069 Counting Divisors
d(x)表示x的约数个数,让你求(l,r<=10^12,r-l<=10^6,k<=10^7) #include<cstdio> using namespace std; ...
- 【set】【Splay】【pb_ds】bzoj1208 [HNOI2004]宠物收养所
每次来的如果是人,且宠物数不为零,就从宠物中选出一个与其差距最小的,累加答案:若为零,就把他放入另一个集合里. 如果是宠物,则同上. 各种平衡树都可过,我蛋疼地用了pb_ds. Code: #incl ...
- 【动态规划去除冗余】NOIP2010-乌龟棋
[题目大意] [思路] 最简单的思路是五维数组,但是当前走到的步数由已经取到的卡片决定,所以只需要四维.本来想要改一个滚动数组的,但是好像没有滚起来,算了(ノ`Д)ノ. 在学校要晚自习到21:15,回 ...
- 微信小程序 Session 失效
微信小程序 Session 失效 微信小程序,前端请求后端,中间多了个微信服务器,所以请求的流程就是 页面--微信服务器--目标服务器 这就导致了一个问题 session 每次请求都是一个新的会话 解 ...
- Problem Z: 百鸡问题
#include <stdio.h> int main() { int i, j, k; ; i <= ; i++ ) ; j <= ; j++ ) ; k <= ; k ...