【题目大意】
给出一张存在哈密顿回路的无向图,判断是否是平面图。
【思路】
首先平面图的一个性质:边数<=点数*3-6
因为存在哈密顿回路,可以将回路看作是一个圆,考量不再哈密顿回路中的边。如果两天边相交(判断相交可以随意yy一下),那么必然一条在圆内一条在圆外,显然是2-SAT。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<stack>
using namespace std;
const int MAXN=+;
int n,m;
int u[MAXN],v[MAXN],pos[MAXN];
vector<int> E[MAXN];
int dfn[MAXN],low[MAXN],instack[MAXN],col[MAXN],cnt,colcnt;
stack<int> S; int cross(int i,int j)
{
int x1=pos[u[i]],y1=pos[v[i]],x2=pos[u[j]],y2=pos[v[j]];
if ((x1<x2 && x2<y1 && y1<y2) || (x2<x1 && x1<y2 && y2<y1)) return ;else return ;
} void addedge(int u,int v)
{
E[u].push_back(v);
E[v].push_back(u);
} void tarjan(int u)
{
dfn[u]=low[u]=++cnt;
S.push(u);
instack[u]=; for (int i=;i<E[u].size();i++)
{
int son=E[u][i];
if (!instack[son])
{
tarjan(son);
low[u]=min(low[son],low[u]);
}
else
if (instack[son]==)
low[u]=min(dfn[son],low[u]);
} if (dfn[u]==low[u])
{
colcnt++;
int x;
do
{
x=S.top();
S.pop();
col[x]=colcnt;
instack[x]=;
}while (x!=u);
}
} void init()
{
scanf("%d%d",&n,&m);
cnt=,colcnt=;
for (int i=;i<MAXN;i++) vector<int>().swap(E[i]);//注意不要忘记清空
memset(instack,,sizeof(instack));
for (int i=;i<=m;i++)
scanf("%d%d",&u[i],&v[i]);
for (int i=;i<=n;i++)
{
int x;
scanf("%d",&x);
pos[x]=i;
}
} void build()
{
for (int i=;i<=m;i++)
if (pos[u[i]]>pos[v[i]]) swap(u[i],v[i]);
for (int i=;i<=m;i++)
for (int j=i+;j<=m;j++)
if (cross(i,j))
{
addedge(i,j+m);
addedge(i+m,j);
}
} void solve()
{
for (int i=;i<=*m;i++) if (!instack[i]) tarjan(i);
int f=;
for (int i=;i<=m;i++)
if (col[i]==col[i+m])
{
f=;
break;
}
if (f) cout<<"YES"<<endl;
else cout<<"NO"<<endl;
} int main()
{
int T;
scanf("%d",&T);
while (T--)
{
init();
if (m<=*n-)//平面图定理
{
build();
solve();
}
else
cout<<"NO"<<endl;
}
return ;
}

【2-SAT(tarjan)】BZOJ1997-[Hnoi2010]Planar的更多相关文章

  1. [bzoj1997][Hnoi2010]Planar(2-sat||括号序列)

    开始填连通分量的大坑了= = 然后平面图有个性质m<=3*n-6..... 由平面图的欧拉定理n-m+r=2(r为平面图的面的个数),在极大平面图的情况可以代入得到m=3*n-6. 网上的证明( ...

  2. bzoj千题计划231:bzoj1997: [Hnoi2010]Planar

    http://www.lydsy.com/JudgeOnline/problem.php?id=1997 如果两条边在环内相交,那么一定也在环外相交 所以环内相交的两条边,必须一条在环内,一条在环外 ...

  3. [BZOJ1997][Hnoi2010]Planar 2-sat (联通分量) 平面图

    1997: [Hnoi2010]Planar Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2317  Solved: 850[Submit][Stat ...

  4. BZOJ1997 [Hnoi2010]Planar 【2-sat】

    题目链接 BZOJ1997 题解 显然相交的两条边不能同时在圆的一侧,\(2-sat\)判一下就好了 但这样边数是\(O(m^2)\)的,无法通过此题 但是\(n\)很小,平面图 边数上界为\(3n ...

  5. BZOJ1997 [Hnoi2010]Planar (2-sat)

    题意:给你一个哈密顿图,判断是不是平面图 思路:先找出哈密顿图来.哈密顿回路可以看成一个环,把边集划分成两个集合,一个在环内,一个在外.如果有两条相交边在环内,则一定不是平面图,所以默认两条相交边,转 ...

  6. bzoj1997: [Hnoi2010]Planar

    2-SAT. 首先有平面图定理 m<=3*n-6,如果不满足这条件肯定不是平面图,直接退出. 然后构成哈密顿回路的边直接忽略. 把哈密顿回路当成一个圆, 如果俩条边交叉(用心去感受),只能一条边 ...

  7. BZOJ1924 [Sdoi2010]所驼门王的宝藏 【建图 + tarjan】

    题目 输入格式 第一行给出三个正整数 N, R, C. 以下 N 行,每行给出一扇传送门的信息,包含三个正整数xi, yi, Ti,表示该传送门设在位于第 xi行第yi列的藏宝宫室,类型为 Ti.Ti ...

  8. hdu 3622 Bomb Game【二分+2-SAT+tarjan】

    用read()会挂 二分半径,显然最优的是所有原都用这个最小半径,然后2-SAT把相交的圆建图,跑tarjan判一下可行性即可 #include<iostream> #include< ...

  9. bzoj1997 [Hnoi2010]Planar——2-SAT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1997 神奇的经典2-SAT问题! 对于两个相交的区间,只能一里一外连边,所以可以进行2-SA ...

  10. 【BZOJ1997】[Hnoi2010]Planar 2-SAT

    [BZOJ1997][Hnoi2010]Planar Description Input Output Sample Input 2 6 9 1 4 1 5 1 6 2 4 2 5 2 6 3 4 3 ...

随机推荐

  1. 获取子iframe框架的元素

    我们常常遇到使用iframe框的时候,该iframe框不能根据自己内部的内容撑起来的这种问题 必要条件:不能在跨域的情况下...本地可以放到localhost下进行测试 //父页面index.html ...

  2. Chrome 浏览器 autocomplete off无效

    在表单填写时突然发现autocomplete 失效了 网上搜索后得出大概意思是在某些情况下确实无效[捂脸] 解决方案 大致原因是浏览器默认为type为password的input标签自动填充密码 这样 ...

  3. web-project 故障修复功能 传递所有的event_id数据到后台

    <script language=javascript> function IdentifyRepair(event_id) { var url; url = "/View/fa ...

  4. 利用Python 发送邮件

    概要 我们都知道SMTP(简单邮件传输协议),是一组用于从原地址到目的地址传输邮件的规范,通过它来控制邮件的中转方式.SMTP规定电子邮件应该如何格式化.如何加密,以及如何在邮件服务器之间传递.SMT ...

  5. sublime Text3 === 无法输入input的问题解决办法

    sublimetext无法对input或者raw_input执行.因此搜了很多方法后,解决了这个问题: 1.先下载插件sublimerepl ,如果无法下载,请点击https://github.com ...

  6. 在LINUX平台上手动创建多个实例(oracle11g)

    在LINUX平台上手动创建多个实例(oracle11g) http://blog.csdn.net/sunchenglu7/article/details/39676659 ORACLE linux ...

  7. memcached基本操作和语法

    一.基本语法 <command name><key><flags><exptime><bytes>\r\n<data block> ...

  8. English——Unit 1

    meditate  v.沉思,冥想:考虑,谋划 medtiation   n.沉思,冥想:深思熟虑 medium elaborate   adj.精心制作的,详尽的,复杂的:v.精心制作:详述(计划, ...

  9. 创建数据库表的SQL语句

    创建表.视图.索引的sql语句如下: CREAT TABLE (列名,数据类型,约束) create view(创建视图) create index (创建索引) 1.primary key(主键) ...

  10. gradle eclipse 配置

    http://blog.csdn.net/caolaosanahnu/article/details/17022321 从gradle官网下载 解压,配置环境变量,gradle -v 验证 gradl ...