【2-SAT(tarjan)】BZOJ1997-[Hnoi2010]Planar
【题目大意】
给出一张存在哈密顿回路的无向图,判断是否是平面图。
【思路】
首先平面图的一个性质:边数<=点数*3-6
因为存在哈密顿回路,可以将回路看作是一个圆,考量不再哈密顿回路中的边。如果两天边相交(判断相交可以随意yy一下),那么必然一条在圆内一条在圆外,显然是2-SAT。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<stack>
using namespace std;
const int MAXN=+;
int n,m;
int u[MAXN],v[MAXN],pos[MAXN];
vector<int> E[MAXN];
int dfn[MAXN],low[MAXN],instack[MAXN],col[MAXN],cnt,colcnt;
stack<int> S; int cross(int i,int j)
{
int x1=pos[u[i]],y1=pos[v[i]],x2=pos[u[j]],y2=pos[v[j]];
if ((x1<x2 && x2<y1 && y1<y2) || (x2<x1 && x1<y2 && y2<y1)) return ;else return ;
} void addedge(int u,int v)
{
E[u].push_back(v);
E[v].push_back(u);
} void tarjan(int u)
{
dfn[u]=low[u]=++cnt;
S.push(u);
instack[u]=; for (int i=;i<E[u].size();i++)
{
int son=E[u][i];
if (!instack[son])
{
tarjan(son);
low[u]=min(low[son],low[u]);
}
else
if (instack[son]==)
low[u]=min(dfn[son],low[u]);
} if (dfn[u]==low[u])
{
colcnt++;
int x;
do
{
x=S.top();
S.pop();
col[x]=colcnt;
instack[x]=;
}while (x!=u);
}
} void init()
{
scanf("%d%d",&n,&m);
cnt=,colcnt=;
for (int i=;i<MAXN;i++) vector<int>().swap(E[i]);//注意不要忘记清空
memset(instack,,sizeof(instack));
for (int i=;i<=m;i++)
scanf("%d%d",&u[i],&v[i]);
for (int i=;i<=n;i++)
{
int x;
scanf("%d",&x);
pos[x]=i;
}
} void build()
{
for (int i=;i<=m;i++)
if (pos[u[i]]>pos[v[i]]) swap(u[i],v[i]);
for (int i=;i<=m;i++)
for (int j=i+;j<=m;j++)
if (cross(i,j))
{
addedge(i,j+m);
addedge(i+m,j);
}
} void solve()
{
for (int i=;i<=*m;i++) if (!instack[i]) tarjan(i);
int f=;
for (int i=;i<=m;i++)
if (col[i]==col[i+m])
{
f=;
break;
}
if (f) cout<<"YES"<<endl;
else cout<<"NO"<<endl;
} int main()
{
int T;
scanf("%d",&T);
while (T--)
{
init();
if (m<=*n-)//平面图定理
{
build();
solve();
}
else
cout<<"NO"<<endl;
}
return ;
}
【2-SAT(tarjan)】BZOJ1997-[Hnoi2010]Planar的更多相关文章
- [bzoj1997][Hnoi2010]Planar(2-sat||括号序列)
开始填连通分量的大坑了= = 然后平面图有个性质m<=3*n-6..... 由平面图的欧拉定理n-m+r=2(r为平面图的面的个数),在极大平面图的情况可以代入得到m=3*n-6. 网上的证明( ...
- bzoj千题计划231:bzoj1997: [Hnoi2010]Planar
http://www.lydsy.com/JudgeOnline/problem.php?id=1997 如果两条边在环内相交,那么一定也在环外相交 所以环内相交的两条边,必须一条在环内,一条在环外 ...
- [BZOJ1997][Hnoi2010]Planar 2-sat (联通分量) 平面图
1997: [Hnoi2010]Planar Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 2317 Solved: 850[Submit][Stat ...
- BZOJ1997 [Hnoi2010]Planar 【2-sat】
题目链接 BZOJ1997 题解 显然相交的两条边不能同时在圆的一侧,\(2-sat\)判一下就好了 但这样边数是\(O(m^2)\)的,无法通过此题 但是\(n\)很小,平面图 边数上界为\(3n ...
- BZOJ1997 [Hnoi2010]Planar (2-sat)
题意:给你一个哈密顿图,判断是不是平面图 思路:先找出哈密顿图来.哈密顿回路可以看成一个环,把边集划分成两个集合,一个在环内,一个在外.如果有两条相交边在环内,则一定不是平面图,所以默认两条相交边,转 ...
- bzoj1997: [Hnoi2010]Planar
2-SAT. 首先有平面图定理 m<=3*n-6,如果不满足这条件肯定不是平面图,直接退出. 然后构成哈密顿回路的边直接忽略. 把哈密顿回路当成一个圆, 如果俩条边交叉(用心去感受),只能一条边 ...
- BZOJ1924 [Sdoi2010]所驼门王的宝藏 【建图 + tarjan】
题目 输入格式 第一行给出三个正整数 N, R, C. 以下 N 行,每行给出一扇传送门的信息,包含三个正整数xi, yi, Ti,表示该传送门设在位于第 xi行第yi列的藏宝宫室,类型为 Ti.Ti ...
- hdu 3622 Bomb Game【二分+2-SAT+tarjan】
用read()会挂 二分半径,显然最优的是所有原都用这个最小半径,然后2-SAT把相交的圆建图,跑tarjan判一下可行性即可 #include<iostream> #include< ...
- bzoj1997 [Hnoi2010]Planar——2-SAT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1997 神奇的经典2-SAT问题! 对于两个相交的区间,只能一里一外连边,所以可以进行2-SA ...
- 【BZOJ1997】[Hnoi2010]Planar 2-SAT
[BZOJ1997][Hnoi2010]Planar Description Input Output Sample Input 2 6 9 1 4 1 5 1 6 2 4 2 5 2 6 3 4 3 ...
随机推荐
- Vue 定义组件模板的七种方式(一般用单文件组件更好)
在 Vue 中定义一个组件模板,至少有七种不同的方式(或许还有其它我不知道的方式): 字符串 模板字面量 x-template 内联模板 render 函数 JSF 单文件组件 在这篇文章中,我将通过 ...
- Eureka服务下线(Cancel)源码分析
Cancel(服务下线) 在Service Provider服务shut down的时候,需要及时通知Eureka Server把自己剔除,从而避免其它客户端调用已经下线的服务,导致服务不可用. co ...
- 【bzoj4373】算术天才⑨与等差数列
同之前那道由乃题,可以认为由乃题是这题的特殊情况…… 维护方法是同样的,维护区间和,区间平方和即可. 注意特判一个数(其实没有必要) #include<bits/stdc++.h> ; u ...
- Lambda 表达式 in java 8
Lambda 表达式 in Java 8 Lambda表达式是java 8 新增的特性 Lambda表达式主要作用:支持将代码块作为方法参数,允许使用更简洁的代码创建函数式接口的实例,是匿名内部类的一 ...
- 实验室项目.md
1 嵌入式操作系统 为什么要用嵌入式操作系统 普通的单片机编程:程序(软件)--单片机硬件: 嵌入式操作系统开发:程序(软件)--操作系统--嵌入式硬件(包括单片机等); 我们平时普通所学的单片机编程 ...
- 学习1:python输入输出
1. 输出 >>> print "hello world" hello world >>> print 'hello world' hello ...
- Redis 基础使用(1)
redis 数据库的使用场景介绍 redis 是 NoSQL 数据库中的一种,特别适合解决一些使用传统关系数据库难以解决的问题,redis 作为内存数据库,如果在不合适的场合,对内存的消耗是很大的,甚 ...
- js字符串与Unicode编码互相转换
).toString() "597d" 这段代码的意思是,把字符'好'转化成Unicode编码,toString()就是把字符转化成16进制了 看看charCodeAt()是怎么个 ...
- Flask 通过扩展来实现登录验证
1. flask扩展 说明: flask的扩展类似于python中的装饰器,和Django中的process_request的方法也类似 测试代码 from flask import Flask,se ...
- mysql 库操作、存储引擎、表操作
阅读目录 库操作 存储引擎 什么是存储引擎 mysql支持的存储引擎 如何使用存储引擎 表操作 创建表 查看表结构 修改表ALTER TABLE 复制表 删除表 数据类型 表完整性约束 回到顶部 一. ...