【动态规划】mr359-最大公约数之和
【题目大意】
选取和不超过S的若干个不同的正整数,使得所有数的约数(不含它本身)之和最大。
输入一个正整数S。
输出最大的约数之和。
样例输入 Sample Input
11
样例输出 Sample Output
9
样例说明
取数字4和6,可以得到最大值(1+2)+(1+2+3)=9。数据规模对于30%的数据,S≤10;
对于100%的数据,S≤1000。
【思路】
水题,普通的01背包问题,唯一需要注意的一点是,1的所有约数之和是0!我一开始就因为1没有单独判断而导致了错误。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int MAXN=+;
int s;
int w[MAXN],f[MAXN]; int main()
{
freopen("mr359.in7","r",stdin);
freopen("mr359.ou7","w",stdout);
scanf("%d",&s);
memset(w,,sizeof(w));
w[]=;
for (int i=;i<=s;i++)
{
for (int j=;j<=sqrt(i);j++)
if (i%j==)
{
w[i]+=j;
if (j*j!=i && j!=) w[i]+=i/j;
}
} f[]=;
for (int j=;j<=s;j++) f[j]=-0x7fffffff;
for (int i=;i<=s;i++)
for (int j=s;j>=i;j--)
{
f[j]=max(f[j],f[j-i]+w[i]);
}
cout<<f[s]<<endl;
return ;
}
【动态规划】mr359-最大公约数之和的更多相关文章
- 51nod1188 最大公约数之和 V2
考虑每一个数对于答案的贡献.复杂度是O(nlogn)的.因为1/1+1/2+1/3+1/4......是logn级别的 //gcd(i,j)=2=>gcd(i/2,j/2)=1=>phi( ...
- 51nod 1237 最大公约数之和 V3(杜教筛)
[题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1237 [题目大意] 求[1,n][1,n]最大公约数之和 ...
- 51NOD 1237 最大公约数之和 V3 [杜教筛]
1237 最大公约数之和 V3 题意:求\(\sum_{i=1}^n\sum_{j=1}^n(i,j)\) 令\(A(n)=\sum_{i=1}^n(n,i) = \sum_{d\mid n}d \c ...
- 51 nod 1188 最大公约数之和 V2
1188 最大公约数之和 V2 题目来源: UVA 基准时间限制:2 秒 空间限制:262144 KB 分值: 160 难度:6级算法题 给出一个数N,输出小于等于N的所有数,两两之间的最大公约数 ...
- 51nod 1040 最大公约数之和(欧拉函数)
1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 给出一个n,求1-n这n个数,同n的最大公约数的和.比如: ...
- 51nod 1040 最大公约数之和 欧拉函数
1040 最大公约数之和 题目连接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1040 Description 给 ...
- 51nod 1040 最大公约数之和
给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6 1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 Input 1个数N(N <= ...
- 51Nod 最大公约数之和V1,V2,V3;最小公倍数之和V1,V2,V3
1040 最大公约数之和 给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6 1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 输入 1个数N ...
- 51nod1040 最大公约数之和,欧拉函数或积性函数
1040 最大公约数之和 给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6时,1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 看起来很简单 ...
- 1188 最大公约数之和 V2
1188 最大公约数之和 V2 题目来源: UVA 基准时间限制:2 秒 空间限制:262144 KB 给出一个数N,输出小于等于N的所有数,两两之间的最大公约数之和. 相当于计算这段程 ...
随机推荐
- 集合框架源码学习之ArrayList
目录: 0-0-1. 前言 0-0-2. 集合框架知识回顾 0-0-3. ArrayList简介 0-0-4. ArrayList核心源码 0-0-5. ArrayList源码剖析 0-0-6. Ar ...
- perl 在win下输出中文乱码问题
use utf8; my $name = '你好'; binmode(STDOUT, ":encoding(gbk)"); print $name,"\n"; ...
- vuejs怎么在服务器部署?
通过npm run build 把生成的dist文件夹(不要上传文件夹)里的内容上传到http服务器上就可以通过 http来访问了,开发机上正常,上传以后 程序出现错误不能运行的原因99.99%的可能 ...
- Linux 入门记录:十一、Linux 用户基础
一.用户.组 1. 用户 当我们使用 Linux 时,需要以一个用户的身份登录,一个进程也需要以一个用户的身份运行.用户限制使用者或进程可以使用或不可以使用哪些资源. 2. 组 组用来方便地管理用户. ...
- otg device id pin 探討
Platform : Qualcomm MSM8937 PMIC : Qualcomm PMI8940 OTG base on USB2.0,增加 device 可當 host 也可當 periphe ...
- 判断ArcSDE是否安装成功
安装SDE后在ArcMap的Toolboxes - Data Management Tools中会新增Geodatabase Administration 即数据管理工具下面会新增地理数据库管理
- ArcGIS Server 基于Token安全验证
写在前面:只使用token并不能起到安全验证的作用,ArcGIS Server文件夹的权限是开放的,我们不需要登录Server平台即可访问服务,所以我们应该将Token验证和文件夹的安全性结合起来使用 ...
- 机器学习方法(七):Kmeans聚类K值如何选,以及数据重抽样方法Bootstrapping
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入.我的博客写一些自己用得到东西,并分享给 ...
- poj 1579(动态规划初探之记忆化搜索)
Function Run Fun Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 17843 Accepted: 9112 ...
- LoadRunner脚本回放日志中的Warning信息
关注LoadRunner脚本回放日志中的Warning信息 最近在与大家的讨论中发现了LoadRunner的很多问题,出于解决问题的出发点,我也就相关自己不理解的问题在Google中搜索了一番,并 ...