3900: 交换茸角

Description

动物园里有 n 头麋鹿。每头麋鹿有两支茸角,每支茸角有一个重量。然而,一旦某头麋鹿上
两支茸角的重量之差过大,这头麋鹿就会失去平衡摔倒。为了不然这种悲剧发生,动物园院长决
定交换某些茸角,使得任意一头麋鹿的两角重量差不超过 c。然而,交换两支茸角十分麻烦,不
仅因为茸角需要多个人来搬运,而且会给麋鹿造成痛苦。因此,你需要计算出最少交换次数,使
得任意一头麋鹿的两角重量差不超过 c。
注意,交换两支茸角只能在两头麋鹿之间进行。因为交换同一头麋鹿的两支角是没有意义的。

Input

第一行为整数 n,c。接下来 n 行,每行两个整数,分别表示一开始每头麋鹿的两角重量。

Output

一个数,即最少交换次数。如果无论如何也不能使每头麋鹿平衡,输出 -1。

Sample Input

3 0
3 3
2 5
2 5

Sample Output

1

HINT

对于 100% 的数据,n <= 16, c <= 1000000, 每支茸角重量不超过 1000000。

网上都没人写题解,还是自己写一发吧。。。

怎么说呢,n<=16是一个突破口,我们肯定要往状压上想。。

刚开始我是直接枚举状态中哪两个互相交换,但最后发现有反例,比如:

3 1

1 3

2 4

3 5

一头鹿可以进行好几次交换。。

然后改变思路,发现这题和某次的topcoder的juice有点像,先预处理出i状态下让每一头鹿进行交换的最小交换次数,如果可行的话,那么答案就是鹿的个数减1(好好想想),接下来就很简单了。。

#include<stdio.h>
#include<iostream>
#include<stdlib.h>
#include<algorithm>
using namespace std;
int n,m,i,j,k,p,c[40],a[20],b[20],f[(1<<16)+5];
int main()
{
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++)
scanf("%d%d",&a[i],&b[i]);
for(i=1;i<(1<<n);i++)
{
k=0;p=0;
for(j=0;(1<<j)<=i;j++)
if(1<<j&i)
{
if(abs(a[j+1]-b[j+1])>m) p=1;
k++;
c[k]=a[j+1];
k++;
c[k]=b[j+1];
}
if(p==0) f[i]=0;else
{
sort(c+1,c+k+1);
p=0;
for(j=1;j<=k;j+=2)
if(c[j+1]-c[j]>m) {p=1;break;}
if(p==1) f[i]=1e9;else f[i]=k/2-1;
}
}
for(i=1;i<(1<<n);i++)
for(j=(i-1)&i;j>0;j=(j-1)&i)
f[i]=min(f[i],f[j]+f[i^j]);
if(f[(1<<n)-1]==1e9) cout<<"-1";else cout<<f[(1<<n)-1];
return 0;
}

  

bzoj 3900: 交换茸角的更多相关文章

  1. bzoj千题计划240:bzoj3900: 交换茸角

    http://www.lydsy.com/JudgeOnline/problem.php?id=3900 dp[i]表示让状态为i的鹿满足要求的最少交换次数 不能枚举两头鹿交换,因为一头鹿可能交换多次 ...

  2. bzoj3900 交换茸角

    题目链接 思路 看到n比较小,可以状压. 可以先考虑什么情况下会无法平衡.显然就是排完序之后两两相邻的不能满足小于等于c的限制. 状态.用f[i]来表示i集合中的鹿完成交换所需要的次数. 预处理.无法 ...

  3. BZOJ 2668 交换棋子(费用流)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2668 题意:有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子中的棋子,最终达到目标状 ...

  4. [BZOJ 2668] 交换棋子

    Link: BZOJ 2668 传送门 Solution: 重点在于对于每条转移路径:首尾算一次,中间节点算两次 可以一点拆三点,将原流量拆成入流量和出流量 但其实也可以就拆两点,分前后是否是一首尾点 ...

  5. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  6. DP&图论 DAY 3 上午

    DP&图论  DAY 3  上午 状态压缩dp >状态压缩dp ◦状态压缩是设计dp状态的一种方式.◦当普通的dp状态维数很多(或者说维数与输入数据有关),但每一维总量很少是,可以将多维 ...

  7. 状态压缩dp相关

    状态压缩dp 状态压缩是设计dp状态的一种方式. 当普通的dp状态维数很多(或者说维数与输入数据有关),但每一维总 量很少是,可以将多维状态压缩为一维来记录. 这种题目最明显的特征就是: 都存在某一给 ...

  8. 状压dp(8.8上午)

    神马是状态压缩? 就是当普通dp的每一维表示的状态非常少的时候,可以压缩成一维来表示 如果m==8 dp[i][0/1][0/1]......[0/1] 压缩一下 dp[i][s]表示到了第i行,状态 ...

  9. DAY 3 上午

    状压DP 状态压缩dp 状态压缩是设计dp状态的一种方式. 当普通的dp状态维数很多(或者说维数与输入数据有关),但每一维总量很少时,可以将多维状态压缩为一维来记录. 这种题目最明显的特征就是:都存在 ...

随机推荐

  1. bzoj 3197 DP

    这道题我们可以看成给定两个黑白树,可以修改其中一棵树的颜色,问最少修改多少颜色可以使两棵树同构. 首先我们知道在树的同构中树上最长链中点(如果是偶数的话就是中间两个点)是不变的,我们把这个点叫做树的重 ...

  2. js_面向对象设计和行为委托设计模式

    最近换了新工作,面试过程中有多多少少的问题没有给的出答案,为自己的技术短板而促急. javascript中万物皆对象(键:值构成的一种数据),暂且不讨论这个句话的对与错,可以想象对象在javascri ...

  3. Sqlmap使用教程

    sqlmap也是渗透中常用的一个注入工具,其实在注入工具方面,一个sqlmap就足够用了,只要你用的熟,秒杀各种工具,只是一个便捷性问题,sql注入另一方面就是手工党了,这个就另当别论了. 今天把我一 ...

  4. AndroidStudio创建jinLibs文件夹

    在文件中的buildTypes节点下添加 sourceSets.main {          jniLibs.srcDir 'libs'      } 如图

  5. centos 搭建 ss

    download:https://files.cnblogs.com/files/xishaonian/ShadowsocksR-4.7.0-win.7z 使用方法:使用root用户登录,运行以下命令 ...

  6. 使用GDB命令行调试器调试C/C++程序【转】

    转自:https://linux.cn/article-4302-1.html 编译自:http://xmodulo.com/gdb-command-line-debugger.html作者: Adr ...

  7. Ubuntu 14.04 安装gstreamer0.10-ffmpeg

    sudo apt-add-repository ppa:mc3man/trusty-media sudo apt-get update sudo apt-get install -y gstreame ...

  8. 006 Java并发编程wait、notify、notifyAll和Condition

    原文https://www.cnblogs.com/dolphin0520/p/3920385.html#4182690 Java并发编程:线程间协作的两种方式:wait.notify.notifyA ...

  9. ASP.NET Core学习链接

    https://www.cnblogs.com/artech/p/dependency-injection-in-asp-net-core.html http://www.cnblogs.com/ar ...

  10. leetcode 之Candy(12)

    这题的思路很巧妙,分两遍扫描,将元素分别和左右元素相比较. int candy(vector<int> &rattings) { int n = rattings.size(); ...