HDU4010

类比静态区间问题->动态区间问题的拓展

我们这里把区间变成树,树上的写改删查问题,最最最常用LCT解决

LCT用来维护动态的森林,对于森林中的每一棵树,用Splay维护。

LCT是把这些Splay关联在一起的数据结构

我们以HDU4010为例子

int n,m,cnt,top;
bool rev[maxn];
int mx[maxn],fa[maxn],v[maxn],tag[maxn],last[maxn],q[maxn];
int c[maxn][];
struct edge{int to,next;}e[maxn<<];

这里把树存成了图,邻接表表示,对于森林中的每一棵树,用Splay来维护

mx,fa,v,tag,c和Splay相关,q是个栈用来预处理fa还有协助Splay操作(具体问题请参考本站Splay的那篇介绍)

这里树边为双向边,在遍历的时候注意判断

接下来介绍LCT中的一些概念和实现:

void access(int x)
{
for(int t=;x;t=x,x=fa[x])
splay(x),c[x][]=t,update(x);
}

这个access的意思是专门开辟一条从根到x的路径,将其作为“重链”,并使用Splay来进行维护

如果x往下是重边,就将其变成轻边,这样这条重链就独立出来了

void makeroot(int x)
{
access(x);splay(x);rev[x]^=;
}

这个makeroot的意思是把某一个节点变成整个LCT的根,这个操作配合access操作就可以方便地提取LCT任意两点之间的路径了

void link(int x,int y)
{
makeroot(x);fa[x]=y;
}

Link-Cut Tree中的link,这个的意思就是连接两棵LCT

void cut(int x,int y)
{
makeroot(x);access(y);splay(y);
c[y][]=fa[c[y][]]=;update(y);
}

这个的意思就是把一棵LCT分离成两棵LCT

还有一个find函数:

int find(int x)
{
access(x);splay(x);
while(c[x][]) x=c[x][];
return x;
}

作用类似于并查集,用来判断一个点到底在哪棵LCT上面

还有一个操作是把一条路径的点权增大val

void add(int x,int y,int val)
{
makeroot(x);access(y);splay(y);
tag[y]+=val;mx[y]+=val;v[y]+=val;
}

最后给出求路径上最值的方法:

makeroot(x);access(y);splay(y);printf("%d\n",mx[y]);

先把x提取到LCT的根,然后打通到y的路径,然后把y伸展到根直接查询mx[y]即可

我们在进行题目所描述的一系列操作的时候,是需要前提的

link操作只能连接两棵不同的LCT,否则树就不是树了

cut操作只能cut在同一棵LCT上否则没有意思

add操作也只能在同一棵LCT上进行

查询也是如此

其实,修改查询的操作都可以原生态地使用LCT的辅助树:Splay来完成

而对于树的动态操作,一定要借助于LCT的函数来完成

最后给出完整的代码:

 #include<cstdio>
#include<algorithm>
using namespace std;
const int INF=;
const int maxn=;
int read()
{
int x=;char ch=getchar();
while(ch<''||ch>'') ch=getchar();
while(ch>=''&&ch<='') {x=x*+ch-'';ch=getchar();}
return x;
}
int n,m,cnt,top;
bool rev[maxn];
int mx[maxn],fa[maxn],v[maxn],tag[maxn],last[maxn],q[maxn];
int c[maxn][];
struct edge{int to,next;}e[maxn<<];
void insert(int u,int v)
{
e[++cnt].to=v;e[cnt].next=last[u];last[u]=cnt;
e[++cnt].to=u;e[cnt].next=last[v];last[v]=cnt;
}
void update(int x)
{
int l=c[x][],r=c[x][];
mx[x]=max(mx[l],mx[r]);
mx[x]=max(mx[x],v[x]);
}
void pushdown(int x)
{
int l=c[x][],r=c[x][];
if(rev[x])
{
rev[l]^=;rev[r]^=;rev[x]^=;
swap(c[x][],c[x][]);
}
if(tag[x])
{
if(l){tag[l]+=tag[x];mx[l]+=tag[x];v[l]+=tag[x];}
if(r){tag[r]+=tag[x];mx[r]+=tag[x];v[r]+=tag[x];}
tag[x]=;
}
}
bool isroot(int x)
{
return c[fa[x]][]!=x&&c[fa[x]][]!=x;
}
void rotate(int x)
{
int y=fa[x],z=fa[y],l,r;
if(c[y][]==x)l=;else l=;r=l^;
if(!isroot(y))
{
if(c[z][]==y)c[z][]=x;
else c[z][]=x;
}
fa[x]=z;fa[y]=x;fa[c[x][r]]=y;
c[y][l]=c[x][r];c[x][r]=y;
update(y);update(x);
}
void splay(int x)
{
top=;q[++top]=x;
for(int i=x;!isroot(i);i=fa[i])
q[++top]=fa[i];
while(top)pushdown(q[top--]);
while(!isroot(x))
{
int y=fa[x],z=fa[y];
if(!isroot(y))
{
if(c[y][]==x^c[z][]==y)rotate(x);
else rotate(y);
}
rotate(x);
}
}
void access(int x)
{
for(int t=;x;t=x,x=fa[x])
splay(x),c[x][]=t,update(x);
}
void makeroot(int x)
{
access(x);splay(x);rev[x]^=;
}
void link(int x,int y)
{
makeroot(x);fa[x]=y;
}
void cut(int x,int y)
{
makeroot(x);access(y);splay(y);
c[y][]=fa[c[y][]]=;update(y);
}
int find(int x)
{
access(x);splay(x);
while(c[x][]) x=c[x][];
return x;
}
void add(int x,int y,int val)
{
makeroot(x);access(y);splay(y);
tag[y]+=val;mx[y]+=val;v[y]+=val;
}
int main()
{
while(scanf("%d",&n)!=EOF)
{
for(int i=;i<=n;i++)
last[i]=tag[i]=rev[i]=fa[i]=c[i][]=c[i][]=;
mx[]=-INF;cnt=;
for(int i=;i<n;i++)
{
int u=read(),v=read();
insert(u,v);
}
for(int i=;i<=n;i++) mx[i]=v[i]=read();
q[++top]=;
for(int k=;k<=top;k++)
{
int now=q[k];
for(int i=last[now];i;i=e[i].next)
{
if(e[i].to!=fa[now])
{
fa[e[i].to]=now;
q[++top]=e[i].to;
}
}
}
m=read();
while(m--)
{
int opt=read(),x=read(),y=read(),w;
switch(opt)
{
case :
if(find(x)==find(y)) {puts("-1");break;}
link(x,y);break;
case :
if(find(x)!=find(y)||x==y) {puts("-1");break;}
cut(x,y);break;
case :
w=x;x=y;y=read();
if(find(x)!=find(y)) {puts("-1");break;}
add(x,y,w);break;
case :
if(find(x)!=find(y)){puts("-1");break;}
makeroot(x);access(y);splay(y);printf("%d\n",mx[y]);break;
}
}
puts("");
}
return ;
}
 #include<cstdio>
#include<algorithm>
using namespace std;
const int INF=;
const int maxn=;
int read()
{
int x=;char ch=getchar();
while(ch<''||ch>'') ch=getchar();
while(ch>=''&&ch<='') {x=x*+ch-'';ch=getchar();}
return x;
}
int n,m,cnt,top;
bool rev[maxn];
int mx[maxn],fa[maxn],v[maxn],tag[maxn],last[maxn],q[maxn];
int c[maxn][];
struct edge{int to,next;}e[maxn<<];
void insert(int u,int v)
{
e[++cnt].to=v;e[cnt].next=last[u];last[u]=cnt;
e[++cnt].to=u;e[cnt].next=last[v];last[v]=cnt;
}
void update(int x)
{
int l=c[x][],r=c[x][];
mx[x]=max(mx[l],mx[r]);
mx[x]=max(mx[x],v[x]);
}
void pushdown(int x)
{
int l=c[x][],r=c[x][];
if(rev[x])
{
rev[l]^=;rev[r]^=;rev[x]^=;
swap(c[x][],c[x][]);
}
if(tag[x])
{
if(l){tag[l]+=tag[x];mx[l]+=tag[x];v[l]+=tag[x];}
if(r){tag[r]+=tag[x];mx[r]+=tag[x];v[r]+=tag[x];}
tag[x]=;
}
}
bool isroot(int x)
{
return c[fa[x]][]!=x&&c[fa[x]][]!=x;
}
void rotate(int x)
{
int y=fa[x],z=fa[y],l,r;
if(c[y][]==x)l=;else l=;r=l^;
if(!isroot(y))
{
if(c[z][]==y)c[z][]=x;
else c[z][]=x;
}
fa[x]=z;fa[y]=x;fa[c[x][r]]=y;
c[y][l]=c[x][r];c[x][r]=y;
update(y);update(x);
}
void splay(int x)
{
top=;q[++top]=x;
for(int i=x;!isroot(i);i=fa[i])
q[++top]=fa[i];
while(top)pushdown(q[top--]);
while(!isroot(x))
{
int y=fa[x],z=fa[y];
if(!isroot(y))
{
if(c[y][]==x^c[z][]==y)rotate(x);
else rotate(y);
}
rotate(x);
}
}
void access(int x)
{
for(int t=;x;t=x,x=fa[x])
splay(x),c[x][]=t,update(x);
}
void makeroot(int x)
{
access(x);splay(x);rev[x]^=;
}
void link(int x,int y)
{
makeroot(x);fa[x]=y;
}
void cut(int x,int y)
{
makeroot(x);access(y);splay(y);
c[y][]=fa[c[y][]]=;update(y);
}
int find(int x)
{
access(x);splay(x);
while(c[x][]) x=c[x][];
return x;
}
void add(int x,int y,int val)
{
makeroot(x);access(y);splay(y);
tag[y]+=val;mx[y]+=val;v[y]+=val;
}
int main()
{
while(scanf("%d",&n)!=EOF)
{
for(int i=;i<=n;i++)
last[i]=tag[i]=rev[i]=fa[i]=c[i][]=c[i][]=;
mx[]=-INF;cnt=;
for(int i=;i<n;i++)
{
int u=read(),v=read();
insert(u,v);
}
for(int i=;i<=n;i++) mx[i]=v[i]=read();
q[++top]=;
for(int k=;k<=top;k++)
{
int now=q[k];
for(int i=last[now];i;i=e[i].next)
{
if(e[i].to!=fa[now])
{
fa[e[i].to]=now;
q[++top]=e[i].to;
}
}
}
m=read();
while(m--)
{
int opt=read(),x=read(),y=read(),w;
switch(opt)
{
case :
if(find(x)==find(y)) {puts("-1");break;}
link(x,y);break;
case :
if(find(x)!=find(y)||x==y) {puts("-1");break;}
cut(x,y);break;
case :
w=x;x=y;y=read();
if(find(x)!=find(y)) {puts("-1");break;}
add(x,y,w);break;
case :
if(find(x)!=find(y)){puts("-1");break;}
makeroot(x);access(y);splay(y);printf("%d\n",mx[y]);break;
}
}
puts("");
}
return ;
}
 #include<cstdio>
#include<algorithm>
using namespace std;
const int INF=;
const int maxn=;
int read()
{
int x=;char ch=getchar();
while(ch<''||ch>'') ch=getchar();
while(ch>=''&&ch<='') {x=x*+ch-'';ch=getchar();}
return x;
}
int n,m,cnt,top;
bool rev[maxn];
int mx[maxn],fa[maxn],v[maxn],tag[maxn],last[maxn],q[maxn];
int c[maxn][];
struct edge{int to,next;}e[maxn<<];
void insert(int u,int v)
{
e[++cnt].to=v;e[cnt].next=last[u];last[u]=cnt;
e[++cnt].to=u;e[cnt].next=last[v];last[v]=cnt;
}
void update(int x)
{
int l=c[x][],r=c[x][];
mx[x]=max(mx[l],mx[r]);
mx[x]=max(mx[x],v[x]);
}
void pushdown(int x)
{
int l=c[x][],r=c[x][];
if(rev[x])
{
rev[l]^=;rev[r]^=;rev[x]^=;
swap(c[x][],c[x][]);
}
if(tag[x])
{
if(l){tag[l]+=tag[x];mx[l]+=tag[x];v[l]+=tag[x];}
if(r){tag[r]+=tag[x];mx[r]+=tag[x];v[r]+=tag[x];}
tag[x]=;
}
}
bool isroot(int x)
{
return c[fa[x]][]!=x&&c[fa[x]][]!=x;
}
void rotate(int x)
{
int y=fa[x],z=fa[y],l,r;
if(c[y][]==x)l=;else l=;r=l^;
if(!isroot(y))
{
if(c[z][]==y)c[z][]=x;
else c[z][]=x;
}
fa[x]=z;fa[y]=x;fa[c[x][r]]=y;
c[y][l]=c[x][r];c[x][r]=y;
update(y);update(x);
}
void splay(int x)
{
top=;q[++top]=x;
for(int i=x;!isroot(i);i=fa[i])
q[++top]=fa[i];
while(top)pushdown(q[top--]);
while(!isroot(x))
{
int y=fa[x],z=fa[y];
if(!isroot(y))
{
if(c[y][]==x^c[z][]==y)rotate(x);
else rotate(y);
}
rotate(x);
}
}
void access(int x)
{
for(int t=;x;t=x,x=fa[x])
splay(x),c[x][]=t,update(x);
}
void makeroot(int x)
{
access(x);splay(x);rev[x]^=;
}
void link(int x,int y)
{
makeroot(x);fa[x]=y;
}
void cut(int x,int y)
{
makeroot(x);access(y);splay(y);
c[y][]=fa[c[y][]]=;update(y);
}
int find(int x)
{
access(x);splay(x);
while(c[x][]) x=c[x][];
return x;
}
void add(int x,int y,int val)
{
makeroot(x);access(y);splay(y);
tag[y]+=val;mx[y]+=val;v[y]+=val;
}
int main()
{
while(scanf("%d",&n)!=EOF)
{
for(int i=;i<=n;i++)
last[i]=tag[i]=rev[i]=fa[i]=c[i][]=c[i][]=;
mx[]=-INF;cnt=;
for(int i=;i<n;i++)
{
int u=read(),v=read();
insert(u,v);
}
for(int i=;i<=n;i++) mx[i]=v[i]=read();
q[++top]=;
for(int k=;k<=top;k++)
{
int now=q[k];
for(int i=last[now];i;i=e[i].next)
{
if(e[i].to!=fa[now])
{
fa[e[i].to]=now;
q[++top]=e[i].to;
}
}
}
m=read();
while(m--)
{
int opt=read(),x=read(),y=read(),w;
switch(opt)
{
case :
if(find(x)==find(y)) {puts("-1");break;}
link(x,y);break;
case :
if(find(x)!=find(y)||x==y) {puts("-1");break;}
cut(x,y);break;
case :
w=x;x=y;y=read();
if(find(x)!=find(y)) {puts("-1");break;}
add(x,y,w);break;
case :
if(find(x)!=find(y)){puts("-1");break;}
makeroot(x);access(y);splay(y);printf("%d\n",mx[y]);break;
}
}
puts("");
}
return ;
}

数据结构&图论:LCT的更多相关文章

  1. 数据结构&图论:欧拉游览树

    ETT可以称为欧拉游览树,它是一种和欧拉序有关的动态树(LCT是解决动态树问题的一种方案,这是另一种) dfs序和欧拉序是把树问题转化到区间问题上然后再用数据结构去维护的利器 通过借助这两种形式能够完 ...

  2. 数据结构&图论:K短路-可持久化可并堆

    本来A*就可以搞定的题,为了怕以后卡复杂度,找了个这么个方法 现阶段水平不够就不补充算法分析部分了 对于图G,建立一个以终点t为起点的最短路径构成的最短路径树 (就是反着跑一遍最短路,然后对于一个不为 ...

  3. 数据结构&图论:图

    在这里对图的存储和遍历进行一个规范,为以后更复杂的数据结构学习打下基础 首先是邻接矩阵的形式,适合于存稠密图,如果是全连接图就再合适不过了 int a[maxn][maxn]; 一个二维数组就可以搞定 ...

  4. 数据结构(LCT动态树):BZOJ 1036: [ZJOI2008]树的统计Count

    1036: [ZJOI2008]树的统计Count Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 12266  Solved: 4945[Submit ...

  5. 动态树之LCT(link-cut tree)讲解

    动态树是一类要求维护森林的连通性的题的总称,这类问题要求维护某个点到根的某些数据,支持树的切分,合并,以及对子树的某些操作.其中解决这一问题的某些简化版(不包括对子树的操作)的基础数据结构就是LCT( ...

  6. SPLAY,LCT学习笔记(四)

    前三篇好像变成了SPLAY专题... 这一篇正式开始LCT! 其实LCT就是基于SPLAY的伸展操作维护树(森林)连通性的一个数据结构 核心操作有很多,我们以一道题为例: 例:bzoj 2049 洞穴 ...

  7. LCT解读(1)

    蒟蒻的LCT解读(1) 前段时间本蒟蒻自学了一下LCT,但是网上的很多资料并不很全,而且作为一个数组选手,我看指针代码真的很麻烦,所以就在这里写一篇数组选手能看懂的代码. LCT的初步了解 LCT全称 ...

  8. 动态树Link-cut tree(LCT)总结

    动态树是个好玩的东西 LCT题集 预备知识 Splay 树链剖分(好像关系并不大) 动态树(Link-cut tree) 先搬dalao博客 什么是LCT? 动态树是一类要求维护森林的连通性的题的总称 ...

  9. LCT入门

    前言 \(LCT\),真的是一个无比神奇的数据结构. 它可以动态维护链信息.连通性.边权.子树信息等各种神奇的东西. 而且,它其实并不难理解. 就算理解不了,它简短的代码也很好背. \(LCT\)与实 ...

随机推荐

  1. OpenCV学习4-----K-Nearest Neighbors(KNN)demo

    最近用到KNN方法,学习一下OpenCV给出的demo. demo大意是随机生成两团二维空间中的点,然后在500*500的二维空间平面上,计算每一个点属于哪一个类,然后用红色和绿色显示出来每一个点 如 ...

  2. Ubuntu录制gif动态图

    大神写博客的时候通常一个Demo会附带一个动态图展示效果.在windows和mac上应该很容易找到录制工具,下面记录一下我在ubuntu下录制gif的过程. 下载byzanz录制工具 在ubuntu软 ...

  3. linux下php环境配置

    参: http://www.laozuo.org/5542.html LAMP,基于Linux/Apache/MySQL/PHP架构的网站建设环境,对于一般的网站来说足够使用,如果我们的网站访问量或者 ...

  4. python模拟SQL语句操作文件

    1.需求 在文本界面输入SQL语句,查询相应的数据,例如输入下面的语句 print(''' 支持大小写的SQL语句查询,大写或者小写都可以 1. select * from db1.emp 2. se ...

  5. 基于3D卷积神经网络的人体行为理解(论文笔记)(转)

    基于3D卷积神经网络的人体行为理解(论文笔记) zouxy09@qq.com http://blog.csdn.net/zouxy09 最近看Deep Learning的论文,看到这篇论文:3D Co ...

  6. JSTL标签之核心标签

    JSTL(JSP Standard Tag Library ,JSP标准标签库)是一个实现 Web应用程序中常见的通用功能的定制标记库集,这些功能包括迭代和条件判断.数据管理格式化.XML 操作以及数 ...

  7. Android 多屏幕适配 dp和px的关系 最好用dp

    Android 多屏幕适配 dp和px的关系 一直以来别人经常问我,android的多屏幕适配到底是怎么弄,我也不知道如何讲解清楚,或许自己也是挺迷糊. 以下得出的结论主要是结合官方文档进行分析的ht ...

  8. MAC锁屏不断网(快捷键启用屏保)

    第一步:要设定锁定输入密码的设置,进入'系统偏好设置''安全性与隐私',将选项'进入睡眠或开始屏幕保护程序后'打勾,选'立即'. 第二步:到'launchpad'中的'其他'文件夹打开'Automat ...

  9. 【Python】python更新数据库脚本两种方法

    最近项目的两次版本迭代中,根据业务需求的变化,需要对数据库进行更新,两次分别使用了不同的方式进行更新. 第一种:使用python的MySQLdb模块利用原生的sql语句进行更新   1 import ...

  10. 【bzoj2502】清理雪道 有上下界最小流

    题目描述 滑雪场坐落在FJ省西北部的若干座山上. 从空中鸟瞰,滑雪场可以看作一个有向无环图,每条弧代表一个斜坡(即雪道),弧的方向代表斜坡下降的方向. 你的团队负责每周定时清理雪道.你们拥有一架直升飞 ...