【BZOJ 1455】 1455: 罗马游戏 (可并堆-左偏树+并查集)
1455: 罗马游戏
Description
罗马皇帝很喜欢玩杀人游戏。 他的军队里面有n个人,每个人都是一个独立的团。最近举行了一次平面几何测试,每个人都得到了一个分数。 皇帝很喜欢平面几何,他对那些得分很低的人嗤之以鼻。他决定玩这样一个游戏。 它可以发两种命令: 1. Merger(i, j)。把i所在的团和j所在的团合并成一个团。如果i, j有一个人是死人,那么就忽略该命令。 2. Kill(i)。把i所在的团里面得分最低的人杀死。如果i这个人已经死了,这条命令就忽略。 皇帝希望他每发布一条kill命令,下面的将军就把被杀的人的分数报上来。(如果这条命令被忽略,那么就报0分)
Input
第一行一个整数n(1<=n<=1000000)。n表示士兵数,m表示总命令数。 第二行n个整数,其中第i个数表示编号为i的士兵的分数。(分数都是[0..10000]之间的整数) 第三行一个整数m(1<=m<=100000) 第3+i行描述第i条命令。命令为如下两种形式: 1. M i j 2. K i
Output
如果命令是Kill,对应的请输出被杀人的分数。(如果这个人不存在,就输出0)
Sample Input
5
100 90 66 99 10
7
M 1 5
K 1
K 1
M 2 3
M 3 4
K 5
K 4Sample Output
10
100
0
66HINT
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 1000010 struct node
{
int x,lc,rc,dis;
}t[Maxn]; void upd(int x)
{
t[x].lc=t[x].rc=t[x].dis=;
} int rt[Maxn],a[Maxn];
int rtt(int x)
{
if(rt[x]!=x) rt[x]=rtt(rt[x]);
return rt[x];
} struct Ltree
{
int merge(int x,int y)
{
if(x==||y==) return x+y;
if(t[x].x>t[y].x) swap(x,y);
t[x].rc=merge(t[x].rc,y);
if(t[t[x].lc].dis<t[t[x].rc].dis) swap(t[x].lc,t[x].rc);
t[x].dis=t[t[x].rc].dis+;
// rt[t[x].rc]=x;
return x;
}
}heap; char s[];
bool mark[Maxn]; int main()
{
int n;
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%d",&a[i]);
for(int i=;i<=n;i++) rt[i]=i,upd(i),t[i].x=a[i],mark[i]=;
int m;
scanf("%d",&m);
for(int i=;i<=m;i++)
{
scanf("%s",s);
if(s[]=='M')
{
int x,y;
scanf("%d%d",&x,&y);
if(!mark[x]||!mark[y]) continue;
if(rtt(x)==rtt(y)) continue;
int nw=heap.merge(rtt(x),rtt(y));
rt[rtt(x)]=rt[rtt(y)]=nw;
}
else
{
int x,nw;
scanf("%d",&x);
if(!mark[x]) {printf("0\n");continue;}
nw=rtt(x);
int xx=heap.merge(t[nw].lc,t[nw].rc);
rt[xx]=xx;rt[nw]=xx;
printf("%d\n",t[nw].x);
mark[nw]=;
}
}
return ;
}
2017-01-18 10:29:39
【BZOJ 1455】 1455: 罗马游戏 (可并堆-左偏树+并查集)的更多相关文章
- 洛谷 - P3377 - 【模板】左偏树(可并堆) - 左偏树 - 并查集
https://www.luogu.org/problemnew/show/P3377 左偏树+并查集 左偏树维护两个可合并的堆,并查集维护两个堆元素合并后可以找到正确的树根. 关键点在于删除一个堆的 ...
- bzoj 1455: 罗马游戏 左偏树+并查集
1455: 罗马游戏 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 668 Solved: 247[Submit][Status] Descriptio ...
- 【bzoj1455】【罗马游戏】左偏树+并查集(模板)
Description 罗马皇帝很喜欢玩杀人游戏. 他的军队里面有n个人,每个人都是一个独立的团.最近举行了一次平面几何测试,每个人都得到了一个分数. 皇帝很喜欢平面几何,他对那些得分很低的人嗤之以鼻 ...
- BZOJ 2809: [Apio2012]dispatching(可并堆 左偏树板题)
这道题只要读懂题目一切好说. 给出nnn个点的一棵树,每一个点有一个费用vvv和一个领导力aaa,给出费用上限mmm.求下面这个式子的最大值ax∗∣S∣ ( S⊂x的子树, ∑iv[i]≤m )\la ...
- [BZOJ1455]罗马游戏 左偏树+并查集
1455: 罗马游戏 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 2285 Solved: 994[Submit][Status][Discuss] ...
- 【BZOJ 1367】 1367: [Baltic2004]sequence (可并堆-左偏树)
1367: [Baltic2004]sequence Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 18 Sample Ou ...
- 【BZOJ 2333 】[SCOI2011]棘手的操作(离线+线段树|可并堆-左偏树)
2333: [SCOI2011]棘手的操作 Description 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条边 ...
- USACO Running Away From the Barn /// 可并堆 左偏树维护大顶堆
题目大意: 给出以1号点为根的一棵有根树,问每个点的子树中与它距离小于等于m的点有多少个 左偏树 https://blog.csdn.net/pengwill97/article/details/82 ...
- BZOJ 2333: [SCOI2011]棘手的操作 可并堆 左偏树 set
https://www.lydsy.com/JudgeOnline/problem.php?id=2333 需要两个结构分别维护每个连通块的最大值和所有连通块最大值中的最大值,可以用两个可并堆实现,也 ...
随机推荐
- 基本控件文档-UIButton属性---iOS-Apple苹果官方文档翻译
本系列所有开发文档翻译链接地址:iOS7开发-Apple苹果iPhone开发Xcode官方文档翻译PDF下载地址 //转载请注明出处--本文永久链接:http://www.cnblogs.com/Ch ...
- Piggy-Bank(多重背包+一维和二维通过方式)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1114 题面: Problem Description Before ACM can do anythi ...
- tensorflow常用函数解析
一.tf.transpose函数的用法 tf.transpose(input, [dimension_1, dimenaion_2,..,dimension_n]):这个函数主要适用于交换输入张量的不 ...
- ubuntu 下安装 activate-power-mode
转自网络 被朋友圈中的atom的activate-power-mode 震撼到了,于是想试试. 步骤如下 首先安装atom: sudo add-apt-repository ppa:webupd8te ...
- Unix/Linux Command Reference
- Vuex 基本概念
Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式.它采用集中式存储管理应用的所有组件的状态,并以相应的规则保证状态以一种可预测的方式发生变化. 每一个 Vuex 应用的核心就是 stor ...
- C++之指针,引用与数组
引用只是对象的另一个名字,通过在变量名前面添加"&”符号来定义,而指针保存的是另一个对象的地址,它们两都提供了间接访问所服务变量的途径. 但是它们的差别还是挺大的: 先从它们的值说起 ...
- c++ ui 库
Dulib 比较流行的direct ui 界面框架 UIStone 据说金山词霸用着,查询资料甚少 DirectUI qq使用了据说,多学习学习吧 基于directUI的dulib不错 c盘没空间,运 ...
- [New learn]@class和#import的区别使用
1.简介 我们在查看代码的时候经常会发现有些地方使用@class而有些地方使用#import,他们到底有什么区别呢, 本文意图去归纳和总结这两种类引用的是的处理方法和规则. 2.分析 此小节会通过一些 ...
- [路由] -- Yii2 url地址美化与重写
转载:http://blog.csdn.net/lmjy102/article/details/53857520