题意

给出一个长为$n$序列$[1,2,...,n]$,$m$次操作,每次指定一段区间$[l,r]$,将这段区间翻转,求最终序列

题解

虽然标题是$Splay$,但是我要用$FHQ\ Treap$,考虑先将$[l,r]$这段区间$split$出来($k$即为这段区间)

void split(int o, int k, int &l, int &r) {
if(!o) { l = r = 0; return ; }
if(siz[lc[o]] < k) l = o, split(rc[o], k - siz[lc[o]] - 1, rc[o], r);
else r = o, split(lc[o], k, l, lc[o]);
upt(o);
}//注意这里要按size来split //写在main函数中
while(m--) {
read(x), read(y);
split(rt, y, l, r), split(l, x - 1, l, k);
rev[k] ^= 1; rt = merge(merge(l, k), r);
}//x,y为操作的区间

然后再将这段区间打一个翻转标记(因为平衡树是可以中序遍历输出的吧...,$rev$为翻转标记)

每次涉及到某个节点时,将$rev$标记下放就好了

void pushdown(int o) {
std::swap(lc[o], rc[o]);
if(lc[o]) rev[lc[o]] ^= 1;
if(rc[o]) rev[rc[o]] ^= 1;
rev[o] = 0;
}

#include <ctime>
#include <cstdio>
#include <cstdlib>
#include <algorithm> template<typename T>
void read(T &x) {
int flag = 1; x = 0; char ch = getchar();
while(ch < '0' || ch > '9') { if(ch == '-') flag = -flag; ch = getchar(); }
while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); x *= flag;
} const int N = 1e5 + 10;
int n, m, lc[N], rc[N], siz[N], val[N], pri[N], rev[N], tot; inline void upt(int o) { siz[o] = siz[lc[o]] + siz[rc[o]] + 1; }
inline int node(int x) { val[++tot] = x, pri[tot] = rand(), siz[tot] = 1; return tot;}
void pushdown(int o) {
std::swap(lc[o], rc[o]);
if(lc[o]) rev[lc[o]] ^= 1;
if(rc[o]) rev[rc[o]] ^= 1;
rev[o] = 0;
}
void split(int o, int k, int &l, int &r) {
if(!o) { l = r = 0; return ; }
if(rev[o]) pushdown(o);
if(siz[lc[o]] < k) l = o, split(rc[o], k - siz[lc[o]] - 1, rc[o], r);
else r = o, split(lc[o], k, l, lc[o]);
upt(o);
}
int merge(int l, int r) {
if(!l || !r) return l + r;
if(pri[l] < pri[r]) { if(rev[l]) pushdown(l); rc[l] = merge(rc[l], r), upt(l); return l; }
else { if(rev[r]) pushdown(r); lc[r] = merge(l, lc[r]), upt(r); return r; }
}
void print(int o) {
if(!o) return ;
if(rev[o]) pushdown(o);
print(lc[o]), printf("%d ", val[o]), print(rc[o]);
} int main () {
read(n), read(m), srand((unsigned)time(NULL));
int x, y, l, r, k, rt = 0;
for(int i = 1; i <= n; ++i) rt = merge(rt, node(i));
while(m--) {
read(x), read(y);
split(rt, y, l, r), split(l, x - 1, l, k);
rev[k] ^= 1; rt = merge(merge(l, k), r);
} print(rt);
return 0;
}

Luogu P3391 【模板】文艺平衡树(FHQ-Treap)的更多相关文章

  1. P3391 【模板】文艺平衡树FHQ treap

    P3391 [模板]文艺平衡树(Splay) 题目背景 这是一道经典的Splay模板题——文艺平衡树. 题目描述 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:翻转 ...

  2. 洛谷.3369.[模板]普通平衡树(fhq Treap)

    题目链接 第一次(2017.12.24): #include<cstdio> #include<cctype> #include<algorithm> //#def ...

  3. 2021.12.08 平衡树——FHQ Treap

    2021.12.08 平衡树--FHQ Treap http://www.yhzq-blog.cc/fhqtreapzongjie/ https://www.cnblogs.com/zwfymqz/p ...

  4. luoguP3391[模板]文艺平衡树(Splay) 题解

    链接一下题目:luoguP3391[模板]文艺平衡树(Splay) 平衡树解析 这里的Splay维护的显然不再是权值排序 现在按照的是序列中的编号排序(不过在这道题目里面就是权值诶...) 那么,继续 ...

  5. Luogu P3835 【模板】可持久化平衡树(fhq Treap)

    P3835 [模板]可持久化平衡树 题意 题目背景 本题为题目普通平衡树的可持久化加强版. 题目描述 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作(对于各个以往的历史版本 ...

  6. 洛谷.3835.[模板]可持久化平衡树(fhq treap)

    题目链接 对每次Merge(),Split()时产生的节点都复制一份(其实和主席树一样).时间空间复杂度都为O(qlogq).(应该更大些 因为rand()?内存真的爆炸..) 对于无修改的操作实际上 ...

  7. 洛谷.3391.[模板]文艺平衡树(Splay)

    题目链接 //注意建树 #include<cstdio> #include<algorithm> const int N=1e5+5; //using std::swap; i ...

  8. 洛谷.3391.文艺平衡树(fhq Traep)

    题目链接 //注意反转时先分裂r,因为l,r是针对整棵树的排名 #include<cstdio> #include<cctype> #include<algorithm& ...

  9. 【洛谷P3391】文艺平衡树——Splay学习笔记(二)

    题目链接 Splay基础操作 \(Splay\)上的区间翻转 首先,这里的\(Splay\)维护的是一个序列的顺序,每个结点即为序列中的一个数,序列的顺序即为\(Splay\)的中序遍历 那么如何实现 ...

  10. FHQ Treap及其可持久化与朝鲜树式重构

    FHQ Treap,又称无旋treap,一种不基于旋转机制的平衡树,可支持所有有旋treap.splay等能支持的操作(只有在LCT中会比splay复杂度多一个log).最重要的是,它是OI中唯一一种 ...

随机推荐

  1. 【设计模式】 模式PK:策略模式VS状态模式

    1.概述 行为类设计模式中,状态模式和策略模式是亲兄弟,两者非常相似,我们先看看两者的通用类图,把两者放在一起比较一下. 策略模式(左)和状态模式(右)的通用类图. 两个类图非常相似,都是通过Cont ...

  2. 【BZOJ2882】工艺 [SAM]

    工艺 Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 小敏和小燕是一对好朋友. 他们正在玩一 ...

  3. 【bzoj】1717 [Usaco2006 Dec]Milk Patterns 产奶的模式

    [算法]后缀数组 [题解]后缀数组 由于m太大,先离散化. 然后处理SA和LCP. 最后用单调队列处理即可. 注意实际上队列头尾长度限制是K-1. 删队尾不要删过头 i≥K才能开始统计答案. #inc ...

  4. HDU 2553 N皇后问题 (深搜)

    题目链接 Problem Description 在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上. 你的任务是,对 ...

  5. 如何用js自己实现Animate运动函数

    js运动是我们学习js必不可少的研究部分,首先我们要知道js的运动其实仅仅是不断改变元素的某个属性值而已,比如不断改变一个绝对定位div的left值,那么你看到的效果就是这个div不断的向右边运动,那 ...

  6. 关于RecylerView:1.在ScrollView的RecylerView滑动事件的处理。2.item之间的距离 小数取整

    1.在ScrollView的RecylerView滑动事件的处理. 在布局文件中在RecylerView外包裹一层相对布局 2.RecylerView item之间的距离 (1)编写SpaceItem ...

  7. GBK UTF-16 UTF-8 编码表

    GBK   UTF-16 UTF-8 ================== D2BB  4E00  E4 B8 80  一 B6A1  4E01  E4 B8 81  丁 C6DF  4E03  E4 ...

  8. st2-045漏洞利用poc

    use LWP::UserAgent; undef $/; ){print "Use:poc.pl http://target/index.action\n";exit;} my ...

  9. Python3 嵌套函数

    嵌套函数: 函数体内用def定义函数 注意:函数体中调用其他函数不算嵌套函数,只能是函数的调用 简单的嵌套函数: 输出结果:

  10. python基础===self的理解

    self是类的实例 self有点类似java中的this,无实际意义.但是约定俗成的都是用self表示类的实例 class A: def func(self): print(self) #指向的是类的 ...