51NOD 1353:树——题解
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1353
今天小a在纸上研究树的形态,众所周知的,有芭蕉树,樟树,函树,平衡树,树套树等等。那么小a今天在研究的就是其中的平衡树啦。
小a认为一棵平衡树的定义为一个n个点,从1到n编号,n-1条边,且任意两点间一定存在唯一一条简单路径,且n>=k。
现在小a看到一棵很大很大的树,足足有n个节点,这里n一定大于等于k!为了方便起见,它想把这个树删去某些边,使得剩下的若干个联通块都满足是平衡树。这时,小b走过来,不屑一顾的说,如果我一条边都不删,那么也算一棵平衡树咯。
小a对于小b的不屑感到很不爽,并问小b,你能算出我删边的方案总数使得满足我的条件吗?两个删边的方案A,B不同当且仅当存在某一条边属于集合A且不属于集合B,或者存在某一条边属于集合B且不属于集合A。为了让你方便,你只要告诉我答案对1000000007(1e9+7)取模就行了。
小b犯了难,找到了身为程序猿的你。
(我dp真垃圾)
题解如下:
我们令dp[i][j]表示以i为根且当前联通块大小为j的方案总数,特别的,dp[i][0]表示割点当前点与其父亲是棵平衡树的方案总数。
对于u的一个孩子v可以得到转移方程dp[u][j+k]=dp[u][j]*dp[v][k]
另外dp[u][0]=Σdp[u][j](j>=题目给定的k)
这样乍看是n^3的,有一个技巧可以做到n^2即每次dp时,只枚举当前u所在子树的大小,每当枚举到它的其中孩子时,当前u所在子树的大小加上它孩子为根的子树的大小。可以理解为每一个点对只被枚举到一次。
最后答案即为dp[root][0]
如果你没看懂的话,反正我也没看懂,我讲一遍我的思路。
我们还是按照上一道题通过dfs序来更新dp值降低复杂度。
设dp[i][j]表示以i为根i所在联通块大小为j的方案数,dp[i][0]为符合条件的总方案数。
可以看出一定有dp[u][j+k]=dp[u][j]*dp[v][k],(相当于u和v之间断开),j的大小为当前我们所遍历完的子树大小sz(毕竟更大的你也没更新过。)
当然也会有dp[u][j]=dp[v][0]*dp[u][j];
但是复杂度算起来为什么是O(n^2)的呢?考虑这就相当于在u和v的子树当中找点对使得这些点一下割掉,u和v割掉,变相等于找点对。
#include<cstdio>
#include<iostream>
#include<vector>
#include<queue>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=;
const int p=1e9+;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct node{
int to,nxt;
}e[N*];
int cnt,head[N];
int n,k,sz[N],dp[N][N];
inline void add(int u,int v){
e[++cnt].to=v;e[cnt].nxt=head[u];head[u]=cnt;
}
void dfs(int u,int f){
sz[u]=;dp[u][]=;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(v==f)continue;
dfs(v,u);
for(int j=sz[u];j>=;j--){
for(int l=sz[v];l>=;l--){
dp[u][j+l]=(dp[u][j+l]+(ll)dp[u][j]*dp[v][l])%p;
}
dp[u][j]=(ll)dp[v][]*dp[u][j]%p;
}
sz[u]+=sz[v];
}
for(int i=k;i<=sz[u];i++)
dp[u][]=(dp[u][]+dp[u][i])%p;
}
int main(){
n=read(),k=read();
for(int i=;i<n;i++){
int u=read(),v=read();
add(u,v);add(v,u);
}
dfs(,);
printf("%d\n",dp[][]);
return ;
}
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+
+++++++++++++++++++++++++++++++++++++++++++
51NOD 1353:树——题解的更多相关文章
- 51nod 1353 树 | 树形DP经典题!
51nod 1353 树 | 树形DP好题! 题面 切断一棵树的任意条边,这棵树会变成一棵森林. 现要求森林中每棵树的节点个数不小于k,求有多少种切法. 数据范围:\(n \le 2000\). 题解 ...
- 51nod 1353 树
树背包 设f[i][j]表示第i个点,和子节点组成的联通块大小为j,其他都可行的方案 j=0表示可行的总方案 #include<cstdio> #include<iostream&g ...
- Vijos1448校门外的树 题解
Vijos1448校门外的树 题解 描述: 校门外有很多树,有苹果树,香蕉树,有会扔石头的,有可以吃掉补充体力的…… 如今学校决定在某个时刻在某一段种上一种树,保证任一时刻不会出现两段相同种类的树,现 ...
- 51nod 1812 树的双直径 题解【树形DP】【贪心】
老了-稍微麻烦一点的树形DP都想不到了. 题目描述 给定一棵树,边权是整数 \(c_i\) ,找出两条不相交的链(没有公共点),使得链长的乘积最大(链长定义为这条链上所有边的权值之和,如果这条链只有 ...
- 51nod 1462 树据结构 | 树链剖分 矩阵乘法
题目链接 51nod 1462 题目描述 给一颗以1为根的树. 每个点有两个权值:vi, ti,一开始全部是零. Q次操作: 读入o, u, d o = 1 对u到根上所有点的vi += d o = ...
- P3830 [SHOI2012]随机树 题解
P3830 随机树 坑题,别人的题解我看了一个下午没一个看得懂的,我还是太弱了. 题目链接 P3830 [SHOI2012]随机树 题目描述 输入输出格式 输入格式: 输入仅有一行,包含两个正整数 q ...
- 51nod 1673 树有几多愁——虚树+状压DP
题目:http://www.51nod.com/Challenge/Problem.html#!#problemId=1673 建一个虚树. 一种贪心的想法是把较小的值填到叶子上,这样一个小值限制到的 ...
- 「洛谷 P3834」「模板」可持久化线段树 题解报告
题目描述 给定n个整数构成的序列,将对于指定的闭区间查询其区间内的第k小值. 输入输出格式 输入格式 第一行包含两个正整数n,m,分别表示序列的长度和查询的个数. 第二行包含n个整数,表示这个序列各项 ...
- 51Nod 1405 树的距离之和 (树dp)
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1405 中文题面不解释了,两次dfs,第一次自下向上,第二次自上 ...
随机推荐
- linux下实现ssh无密码登录访问
在192.168.9.51机器上 1)运行:#ssh-keygen -t rsa 2)然后拍两下回车(均选择默认) 3)运行: #ssh-copy-id -i /root/.ssh/id_rsa.pu ...
- 基于Redis+Kafka的首页曝光过滤方案
本文来自网易云社区 作者:李勇 背景 网易美学首页除了banner和四个固定位,大部分都是通过算法推荐获取的内容,其中的内容包括心得.合辑.视频及问答等.现在需要实现的是当推荐内容在用户屏幕曝光后(即 ...
- 金山注入浏览器默认开启上网导航 www.uu114.cn
金山注入浏览器默认开启上网导航 www.uu114.cn 今天突然发现我的电脑所有浏览器打开后,都会默认打开一个www.uu114.cn网站,chrome.firefox和IE都中招了.经过排查,发现 ...
- 100万套PPT模板,包含全宇宙所有主题类型PPT,绕宇宙100圈,持续更新
100万套PPT模板,包含全宇宙所有主题类型PPT(全部免费,都是精品,没有一张垃圾不好看的PPT,任何一张PPT拿来套入自己的信息就可以立马使用),绕宇宙100圈,任意一个模板在某文库上都价不菲.强 ...
- 「题目代码」P1039~P1043(Java)
P1039 谭浩强C语言(第三版)习题4.9 import java.util.*; import java.io.*; import java.math.BigInteger; public cla ...
- Objective-C 内存管理和ARC
内存管理 范围: 任何继承了NSObject的对象 对基本数据类型无效 原理: 每个对象内部都保存了一个与之相关联的整数 称为引用计数器 1.计数器的基本操作 当使用alloc new或者copy创建 ...
- 小程序页面的四种文件(JSON、WXML、WXSS、JS)加载顺序
一个小程序页面由四种文件组成: 1)json 页面配置文件 2)js 页面逻辑文件(必需) 3)wxml 页面结构文件(必需) 4)wxss 页面样式文件 这四个文件的加载顺序: 第一步: 加载页面j ...
- python 终极篇 --- django 视图系统
Django的View(视图) 一个视图函数(类),简称视图,是一个简单的Python 函数(类),它接受Web请求并且返回Web响应. 响应可以是一张网页的HTML内容,一个重定向,一个404错误, ...
- lintcode491 回文数
回文数 判断一个正整数是不是回文数. 回文数的定义是,将这个数反转之后,得到的数仍然是同一个数. 注意事项 给的数一定保证是32位正整数,但是反转之后的数就未必了. 您在真实的面试中是否遇到过这个题? ...
- nginx配置和网站的部署
环境: CentOS Linux release 7.3.1611 (Core) nginx version: nginx/1.13.4 PHP 5.4.16 (cli) (built: Nov 6 ...