Sightseeing
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 9247   Accepted: 3242

Description

Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the bus moves from one city S to another city F. On this way, the tourists in the bus can see the sights alongside the route travelled. Moreover, the bus makes a number of stops (zero or more) at some beautiful cities, where the tourists get out to see the local sights.

Different groups of tourists may have different preferences for the sights they want to see, and thus for the route to be taken from S to F. Therefore, Your Personal Holiday wants to offer its clients a choice from many different routes. As hotels have been booked in advance, the starting city S and the final city F, though, are fixed. Two routes from S to F are considered different if there is at least one road from a city A to a city B which is part of one route, but not of the other route.

There is a restriction on the routes that the tourists may choose from. To leave enough time for the sightseeing at the stops (and to avoid using too much fuel), the bus has to take a short route from S to F. It has to be either a route with minimal distance, or a route which is one distance unit longer than the minimal distance. Indeed, by allowing routes that are one distance unit longer, the tourists may have more choice than by restricting them to exactly the minimal routes. This enhances the impression of a personal holiday.

For example, for the above road map, there are two minimal routes from S = 1 to F = 5: 1 → 2 → 5 and 1 → 3 → 5, both of length 6. There is one route that is one distance unit longer: 1 → 3 → 4 → 5, of length 7.

Now, given a (partial) road map of the Benelux and two cities S and F, tour operator Your Personal Holiday likes to know how many different routes it can offer to its clients, under the above restriction on the route length.

Input

The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:

  • One line with two integers N and M, separated by a single space, with 2 ≤ N ≤ 1,000 and 1 ≤ M ≤ 10, 000: the number of cities and the number of roads in the road map.

  • M lines, each with three integers AB and L, separated by single spaces, with 1 ≤ AB ≤ NA ≠ B and 1 ≤ L ≤ 1,000, describing a road from city A to city B with length L.

    The roads are unidirectional. Hence, if there is a road from A to B, then there is not necessarily also a road from B to A. There may be different roads from a city A to a city B.

  • One line with two integers S and F, separated by a single space, with 1 ≤ SF ≤ N and S ≠ F: the starting city and the final city of the route.

    There will be at least one route from S to F.

Output

For every test case in the input file, the output should contain a single number, on a single line: the number of routes of minimal length or one distance unit longer. Test cases are such, that this number is at most 109 = 1,000,000,000.

Sample Input

2
5 8
1 2 3
1 3 2
1 4 5
2 3 1
2 5 3
3 4 2
3 5 4
4 5 3
1 5
5 6
2 3 1
3 2 1
3 1 10
4 5 2
5 2 7
5 2 7
4 1

Sample Output

3
2

Hint

The first test case above corresponds to the picture in the problem description.

这题好像用spfa写起来特别的复杂  还是用dijkstra吧

以后还是多用dijkstar 他们都说这个快一些

spfa 以后判断环再写这个

题意:t组数据,每组输入点n和边m个数,

输入m条边,再输入起点ST和终点EN,

求从ST到EN最短路和比最短路长1的路的总条数。

这题改变松弛条件就行了

写起来繁琐一点

  1. if(x<最小)更新最短路和次短路
  2. if(x==最小)更新最短路数量
  3. if(x<次小)更新次短路
  4. if(x==次小)更新次短路数量
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std;
typedef long long LL;
const int maxn = 1e5 + ;
const int mod = 1e9 + ;
const int INF = 2e9 + ;
int n, m, t, u, v, w, f, s, tot;
int head[], d[][], cnt[][], vis[][];
struct node {
int v, w, next;
} edge[maxn];
void init() {
tot = ;
memset(head, -, sizeof(head));
}
void add(int u, int v, int w) {
edge[tot].v = v;
edge[tot].w = w;
edge[tot].next = head[u];
head[u] = tot;
tot++;
}
struct node1 {
int u, d, p;
node1(int u, int d, int p): u(u), d(d), p(p) {}
bool operator < (const node1 & a)const {
return d > a.d;
}
};
void dijkstra(int s) {
priority_queue<node1>q;
memset(vis, , sizeof(vis));
memset(cnt, , sizeof(cnt));
for (int i = ; i <= n ; i++) d[i][] = d[i][] = INF;
q.push(node1(s, , ));
d[s][] = , cnt[s][] = ;
while(!q.empty()) {
node1 now = q.top();
q.pop();
int u = now.u, p = now.p;
if (vis[u][p]) continue;
vis[u][p] = ;
for (int i = head[u] ; ~i ; i = edge[i].next ) {
int v = edge[i].v, w = edge[i].w;
if (d[v][] > d[u][p] + w) {
d[v][] = d[v][];
cnt[v][] = cnt[v][];
d[v][] = d[u][p] + w;
cnt[v][] = cnt[u][p];
q.push(node1(v, d[v][], ));
q.push(node1(v, d[v][], ));
} else if (d[v][] == d[u][p] + w) cnt[v][] += cnt[u][p];
else if (d[v][] > d[u][p] + w) {
d[v][] = d[u][p] + w;
cnt[v][] = cnt[u][p];
q.push(node1(v, d[v][], ));
} else if (d[v][] == d[u][p] + w) cnt[v][] += cnt[u][p];
}
}
}
int main() {
scanf("%d", &t);
while(t--) {
init();
scanf("%d%d", &n, &m);
for (int i = ; i < m ; i++) {
scanf("%d%d%d", &u, &v, &w);
add(u, v, w);
}
scanf("%d%d", &s, &f);
dijkstra(s);
if (d[f][] + == d[f][]) printf("%d\n", cnt[f][] + cnt[f][]);
else printf("%d\n", cnt[f][]);
}
return ;
}

POJ---3463 Sightseeing 记录最短路和次短路的条数的更多相关文章

  1. POJ - 3463 Sightseeing 最短路计数+次短路计数

    F - Sightseeing 传送门: POJ - 3463 分析 一句话题意:给你一个有向图,可能有重边,让你求从s到t最短路的条数,如果次短路的长度比最短路的长度多1,那么在加上次短路的条数. ...

  2. poj 3463 Sightseeing( 最短路与次短路)

    http://poj.org/problem?id=3463 Sightseeing Time Limit: 2000MS   Memory Limit: 65536K Total Submissio ...

  3. poj 3463 Sightseeing——次短路计数

    题目:http://poj.org/problem?id=3463 当然要给一个点记最短路和次短路的长度和方案. 但往优先队列里放的结构体和vis竟然也要区分0/1,就像把一个点拆成两个点了一样. 不 ...

  4. POJ 3463 Sightseeing (次短路经数)

    Sightseeing Time Limit: 2000MS   Memory Limit: 65536K Total Submissions:10005   Accepted: 3523 Descr ...

  5. POJ 3463 Sightseeing (次短路)

    题意:求两点之间最短路的数目加上比最短路长度大1的路径数目 分析:可以转化为求最短路和次短路的问题,如果次短路比最短路大1,那么结果就是最短路数目加上次短路数目,否则就不加. 求解次短路的过程也是基于 ...

  6. POJ 3463 Sightseeing 【最短路与次短路】

    题目 Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the ...

  7. poj 3463 Sightseeing(次短路+条数统计)

    /* 对dij的再一次理解 每个点依旧永久标记 只不过这里多搞一维 0 1 表示最短路还是次短路 然后更新次数相当于原来的两倍 更新的时候搞一下就好了 */ #include<iostream& ...

  8. POJ 3463 Sightseeing 题解

    题目 Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the ...

  9. POJ 3463 Sightseeing

    最短路+次短路(Dijkstra+priority_queue) 题意是要求你找出最短路的条数+与最短路仅仅差1的次短路的条数. 開始仅仅会算最短路的条数,和次短路的长度.真是给次短路条数跪了.ORZ ...

  10. Sightseeing(poj 3463)

    题意:给出n个点m条单向边,求最短路的道路条数和比最短路大1的道路条数的和. /* 用Dijkstra更新2*n次,来更新出所有点的最短路和次短路,顺便更新方案数. */ #include<cs ...

随机推荐

  1. OIDC in Angular 6

    参照 草根专栏- ASP.NET Core + Ng6 实战:https://v.qq.com/x/page/i07702h18nz.html 1. OIDC-Client https://githu ...

  2. jquery取radio单选按钮

    // var strMess = '<%=Exchange() %>';//            if (strMess == "兑换成功") {//         ...

  3. Sublime Text 插件推荐——for web developers

    楼主向高大上的: web front-end development engineer (好吧,google就是这样翻译的 ^_^)们推荐 ST 插件,在此抛砖引玉: NO.1 :Emmet (原名: ...

  4. 浮点数(floating-point number)二进制存储格式

    定义 浮点数就是小数点位置不固定的数,也就是说与定点数不一样,浮点数的小数点后的小数位数可以是任意的,根据IEEE754-1985(也叫IEEE Standard for Binary Floatin ...

  5. Thunder——基于NABCD评价“欢迎来怼”团队作品

    基于NABCD N——need需求 对于开设了软件工程课并且正在进行教学活动的老师和同学,除了在写作业时会打开电脑进行操作,平时我们更希望可以通过一些简单方便的方法来查看有关作业的内容,比如查看一下老 ...

  6. python 项目配置虚拟环境

    # Windows 环境1, 安装 Visual C++ 2015 Build Tools, 依赖.Net Framework 4.6, 安装包位置 ./tools/windows/visualcpp ...

  7. Memcache+Cookie解决分布式系统共享登录状态

    Memcached高性能的,分布式的内存对象缓存系统,用于在动态应用中减少数据库负载,提升访问速度.Memcached能够用来存储各种格式的数据,包括图像.视频.文件以及数据库检索的结果等. Memc ...

  8. jQuery对象和DOM对象使用说明

    1.jQuery对象和DOM对象第一次学习jQuery,经常分辨不清哪些是jQuery对象,哪些是 DOM对象,因此需要重点了解jQuery对象和DOM对象以及它们之间的关系.DOM对象,即是我们用传 ...

  9. lintcode-33-N皇后问题

    33-N皇后问题 n皇后问题是将n个皇后放置在n*n的棋盘上,皇后彼此之间不能相互攻击. 给定一个整数n,返回所有不同的n皇后问题的解决方案. 每个解决方案包含一个明确的n皇后放置布局,其中" ...

  10. python模拟SQL语句操作文件

    1.需求 在文本界面输入SQL语句,查询相应的数据,例如输入下面的语句 print(''' 支持大小写的SQL语句查询,大写或者小写都可以 1. select * from db1.emp 2. se ...