POJ---3463 Sightseeing 记录最短路和次短路的条数
| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 9247 | Accepted: 3242 |
Description
Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the bus moves from one city S to another city F. On this way, the tourists in the bus can see the sights alongside the route travelled. Moreover, the bus makes a number of stops (zero or more) at some beautiful cities, where the tourists get out to see the local sights.
Different groups of tourists may have different preferences for the sights they want to see, and thus for the route to be taken from S to F. Therefore, Your Personal Holiday wants to offer its clients a choice from many different routes. As hotels have been booked in advance, the starting city S and the final city F, though, are fixed. Two routes from S to F are considered different if there is at least one road from a city A to a city B which is part of one route, but not of the other route.
There is a restriction on the routes that the tourists may choose from. To leave enough time for the sightseeing at the stops (and to avoid using too much fuel), the bus has to take a short route from S to F. It has to be either a route with minimal distance, or a route which is one distance unit longer than the minimal distance. Indeed, by allowing routes that are one distance unit longer, the tourists may have more choice than by restricting them to exactly the minimal routes. This enhances the impression of a personal holiday.

For example, for the above road map, there are two minimal routes from S = 1 to F = 5: 1 → 2 → 5 and 1 → 3 → 5, both of length 6. There is one route that is one distance unit longer: 1 → 3 → 4 → 5, of length 7.
Now, given a (partial) road map of the Benelux and two cities S and F, tour operator Your Personal Holiday likes to know how many different routes it can offer to its clients, under the above restriction on the route length.
Input
The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:
One line with two integers N and M, separated by a single space, with 2 ≤ N ≤ 1,000 and 1 ≤ M ≤ 10, 000: the number of cities and the number of roads in the road map.
M lines, each with three integers A, B and L, separated by single spaces, with 1 ≤ A, B ≤ N, A ≠ B and 1 ≤ L ≤ 1,000, describing a road from city A to city B with length L.
The roads are unidirectional. Hence, if there is a road from A to B, then there is not necessarily also a road from B to A. There may be different roads from a city A to a city B.
One line with two integers S and F, separated by a single space, with 1 ≤ S, F ≤ N and S ≠ F: the starting city and the final city of the route.
There will be at least one route from S to F.
Output
For every test case in the input file, the output should contain a single number, on a single line: the number of routes of minimal length or one distance unit longer. Test cases are such, that this number is at most 109 = 1,000,000,000.
Sample Input
2
5 8
1 2 3
1 3 2
1 4 5
2 3 1
2 5 3
3 4 2
3 5 4
4 5 3
1 5
5 6
2 3 1
3 2 1
3 1 10
4 5 2
5 2 7
5 2 7
4 1
Sample Output
3
2
Hint
The first test case above corresponds to the picture in the problem description.
这题好像用spfa写起来特别的复杂 还是用dijkstra吧
以后还是多用dijkstar 他们都说这个快一些
spfa 以后判断环再写这个
题意:t组数据,每组输入点n和边m个数,
输入m条边,再输入起点ST和终点EN,
求从ST到EN最短路和比最短路长1的路的总条数。
这题改变松弛条件就行了
写起来繁琐一点
- if(x<最小)更新最短路和次短路
- if(x==最小)更新最短路数量
- if(x<次小)更新次短路
- if(x==次小)更新次短路数量
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std;
typedef long long LL;
const int maxn = 1e5 + ;
const int mod = 1e9 + ;
const int INF = 2e9 + ;
int n, m, t, u, v, w, f, s, tot;
int head[], d[][], cnt[][], vis[][];
struct node {
int v, w, next;
} edge[maxn];
void init() {
tot = ;
memset(head, -, sizeof(head));
}
void add(int u, int v, int w) {
edge[tot].v = v;
edge[tot].w = w;
edge[tot].next = head[u];
head[u] = tot;
tot++;
}
struct node1 {
int u, d, p;
node1(int u, int d, int p): u(u), d(d), p(p) {}
bool operator < (const node1 & a)const {
return d > a.d;
}
};
void dijkstra(int s) {
priority_queue<node1>q;
memset(vis, , sizeof(vis));
memset(cnt, , sizeof(cnt));
for (int i = ; i <= n ; i++) d[i][] = d[i][] = INF;
q.push(node1(s, , ));
d[s][] = , cnt[s][] = ;
while(!q.empty()) {
node1 now = q.top();
q.pop();
int u = now.u, p = now.p;
if (vis[u][p]) continue;
vis[u][p] = ;
for (int i = head[u] ; ~i ; i = edge[i].next ) {
int v = edge[i].v, w = edge[i].w;
if (d[v][] > d[u][p] + w) {
d[v][] = d[v][];
cnt[v][] = cnt[v][];
d[v][] = d[u][p] + w;
cnt[v][] = cnt[u][p];
q.push(node1(v, d[v][], ));
q.push(node1(v, d[v][], ));
} else if (d[v][] == d[u][p] + w) cnt[v][] += cnt[u][p];
else if (d[v][] > d[u][p] + w) {
d[v][] = d[u][p] + w;
cnt[v][] = cnt[u][p];
q.push(node1(v, d[v][], ));
} else if (d[v][] == d[u][p] + w) cnt[v][] += cnt[u][p];
}
}
}
int main() {
scanf("%d", &t);
while(t--) {
init();
scanf("%d%d", &n, &m);
for (int i = ; i < m ; i++) {
scanf("%d%d%d", &u, &v, &w);
add(u, v, w);
}
scanf("%d%d", &s, &f);
dijkstra(s);
if (d[f][] + == d[f][]) printf("%d\n", cnt[f][] + cnt[f][]);
else printf("%d\n", cnt[f][]);
}
return ;
}
POJ---3463 Sightseeing 记录最短路和次短路的条数的更多相关文章
- POJ - 3463 Sightseeing 最短路计数+次短路计数
F - Sightseeing 传送门: POJ - 3463 分析 一句话题意:给你一个有向图,可能有重边,让你求从s到t最短路的条数,如果次短路的长度比最短路的长度多1,那么在加上次短路的条数. ...
- poj 3463 Sightseeing( 最短路与次短路)
http://poj.org/problem?id=3463 Sightseeing Time Limit: 2000MS Memory Limit: 65536K Total Submissio ...
- poj 3463 Sightseeing——次短路计数
题目:http://poj.org/problem?id=3463 当然要给一个点记最短路和次短路的长度和方案. 但往优先队列里放的结构体和vis竟然也要区分0/1,就像把一个点拆成两个点了一样. 不 ...
- POJ 3463 Sightseeing (次短路经数)
Sightseeing Time Limit: 2000MS Memory Limit: 65536K Total Submissions:10005 Accepted: 3523 Descr ...
- POJ 3463 Sightseeing (次短路)
题意:求两点之间最短路的数目加上比最短路长度大1的路径数目 分析:可以转化为求最短路和次短路的问题,如果次短路比最短路大1,那么结果就是最短路数目加上次短路数目,否则就不加. 求解次短路的过程也是基于 ...
- POJ 3463 Sightseeing 【最短路与次短路】
题目 Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the ...
- poj 3463 Sightseeing(次短路+条数统计)
/* 对dij的再一次理解 每个点依旧永久标记 只不过这里多搞一维 0 1 表示最短路还是次短路 然后更新次数相当于原来的两倍 更新的时候搞一下就好了 */ #include<iostream& ...
- POJ 3463 Sightseeing 题解
题目 Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the ...
- POJ 3463 Sightseeing
最短路+次短路(Dijkstra+priority_queue) 题意是要求你找出最短路的条数+与最短路仅仅差1的次短路的条数. 開始仅仅会算最短路的条数,和次短路的长度.真是给次短路条数跪了.ORZ ...
- Sightseeing(poj 3463)
题意:给出n个点m条单向边,求最短路的道路条数和比最短路大1的道路条数的和. /* 用Dijkstra更新2*n次,来更新出所有点的最短路和次短路,顺便更新方案数. */ #include<cs ...
随机推荐
- Java基础:关键字final,static
一 . final 含义:adj.最后的,最终的; 决定性的; 不可更改的.在Java中是一个保留的关键字,可以声明成员变量.方法.类以及本地变量.一旦你将引用声明作final,你将不能改变这个引用了 ...
- vue 与jq 的对比
vue.react和angular,众所周知,他们是前端框架的3个大佬.这篇主要想对比一下用vue和用jq的区别,至于和其他框架的对比,我想vue的官网说的更为详细. 我算是独自用vue写过一个小型项 ...
- Python+Opencv实现把图片转为视频
1. 安装Opencv包 在Python命令行输入如下命令(如果你使用的Anaconda,直接进入Anaconda Prompt键入命令即可.如果你不知道Anaconda是什么,可以参考王树义老师的文 ...
- jQuery 调用后台方法(net)
<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default2.aspx.cs ...
- php面试的那些“黑话”
以下是一些常见的面试暗语,求职者一定要弄清楚其中蕴含的深意,不然可能“躺着也中枪”,最后只能铩羽而归. (1)请把简历先放在这,有消息我们会通知你的 面试官说出这句话,则表明他对你已经“兴趣不大”,为 ...
- Python高级编程-多进程
要让Python程序实现多进程(multiprocessing),我们先了解操作系统的相关知识. Unix/Linux操作系统提供了一个fork()系统调用,它非常特殊.普通的函数调用,调用一次,返回 ...
- js如何使浏览器允许脚本异步加载
js如何使浏览器允许脚本异步加载 如果脚本体积很大,下载和执行的时间就会很长,因此造成浏览器堵塞,用户会感觉到浏览器“卡死”了,没有任何响应.这显然是很不好的体验,所以浏览器允许脚本异步加载,下面就是 ...
- 软工1816 · Alpha冲刺(3/10)
团队信息 队名:爸爸饿了 组长博客:here 作业博客:here 组员情况 组员1(组长):王彬 过去两天完成了哪些任务 完成了对laravel框架的一整套机制的了解,对后端的处理流程有全面的认识对整 ...
- Debian 7 amd64问题
Debian 7 发布了有1段时间,最近才在自己的电脑硬盘安装,用户体验还算可以.在安装Debian的过程中,有问题还是要记录一下的. 注意:遇到的问题跟硬件体系相关,可能在个别电脑没法重现. 1.默 ...
- 记一次dll强命名冲突事件
一 问题的出现 现在要做一个net分布式平台,平台涉及多个服务之间调用问题,最基础的莫过于sso.由于我们的sso采用了wcf一套私有框架实现,另外一个webapi服务通过接口调用sso服务.由于s ...