P2272 [ZJOI2007]最大半连通子图

题目描述

一个有向图\(G=(V,E)\)称为半连通的\((Semi-Connected)\),如果满足:\(\forall u,v \in V\),满足\(u \to v\)或\(v \to u\),即对于图中任意两点\(u\),\(v,\)存在一条\(u\)到\(v\)的有向路径或者从\(v\)到\(u\)的有向路径。若\(G'=(V',E')\)满足\(V' \in V\),\(E'\)是\(E\)中所有跟\(V'\)有关的边,则称\(G'\)是\(G\)的一个导出子图。若\(G'\)是\(G\)的导出子图,且\(G'\)半连通,则称\(G'\)为\(G\)的半连通子图。若\(G'\)是\(G\)所有半连通子图中包含节点数最多的,则称\(G'\)是\(G\)的最大半连通子图。给定一个有向图\(G\),请求出\(G\)的最大半连通子图拥有的节点数\(K\),以及不同的最大半连通子图的数目\(C\)。由于\(C\)可能比较大,仅要求输出\(C\)对\(X\)的余数。

输入输出格式

输入格式:

第一行包含两个整数\(N\),\(M\),\(X\)。\(N\),\(M\)分别表示图\(G\)的点数与边数,X的意义如上文所述接下来\(M\)行,每行两个正整数\(a\),\(b\),表示一条有向边\((a,b)\)。图中的每个点将编号为\(1,2,3…N\),保证输入中同一个\((a,b)\)不会出现两次。

输出格式:

应包含两行,第一行包含一个整数\(K\)。第二行包含整数\(C\) \(Mod\) \(X\).

说明

对于100%的数据, \(N \le 100000, M \le 1000000, X \le 10^8\)


这种题先缩点都成套路了吧

考虑在一个有向无环图中半联通图是什么,结果是一条链,直接做DP就行了

但是!!

这个题一定要考虑重边


Code:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#define ll long long
using namespace std;
const int N=100010;
const int M=1000010;
int head0[N],Next0[M],to0[M],cnt0;
void add0(int u,int v)
{
Next0[++cnt0]=head0[u];to0[cnt0]=v;head0[u]=cnt0;
}
int head[N],Next[M],to[M],cnt;
void add(int u,int v)
{
Next[++cnt]=head[u];to[cnt]=v;head[u]=cnt;
}
int dfn[N],low[N],in[N],s[N],ha[N],siz[N],time,tot;
int n,m,n_,cntt;
ll p;
pair <int,int > e[M];
void tarjan(int now)
{
dfn[now]=low[now]=++time;
s[++tot]=now;
in[now]=1;
for(int i=head0[now];i;i=Next0[i])
{
int v=to0[i];
if(!dfn[v])
{
tarjan(v);
low[now]=min(low[now],low[v]);
}
else if(in[v])
low[now]=min(low[now],dfn[v]);
}
if(low[now]==dfn[now])
{
int k,Siz=0;
n_++;
do
{
k=s[tot--];
Siz++;
ha[k]=n_;
in[k]=0;
}while(k!=now);
siz[n_]=Siz;
}
}
void New()
{
for(int i=1;i<=n;i++)
{
for(int j=head0[i];j;j=Next0[j])
{
int v=to0[j];
if(ha[v]!=ha[i])
e[++cntt]=make_pair(ha[i],ha[v]);
}
}
sort(e+1,e+1+cntt);
cntt=unique(e+1,e+1+cntt)-(e+1);
for(int i=1;i<=cntt;i++)
{
in[e[i].second]++;
add(e[i].first,e[i].second);
}
}
void init()
{
scanf("%d%d%lld",&n,&m,&p);
int u,v;
for(int i=1;i<=m;i++)
{
scanf("%d%d",&u,&v);
add0(u,v);
}
for(int i=1;i<=n;i++)
if(!dfn[i])
tarjan(i);
memset(in,0,sizeof(in));
New();
}
ll Cnt[N],ans;
int dp[N],mx;
queue <int > q;
void work()
{
for(int i=1;i<=n_;i++)
if(!in[i])
{
q.push(i);
dp[i]=siz[i];
mx=max(mx,dp[i]);
Cnt[i]=1;
}
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=head[u];i;i=Next[i])
{
int v=to[i];
if(dp[v]<dp[u]+siz[v])
{
dp[v]=dp[u]+siz[v];
Cnt[v]=Cnt[u];
mx=max(mx,dp[v]);
}
else if(dp[v]==dp[u]+siz[v])
(Cnt[v]+=Cnt[u])%=p;
in[v]--;
if(!in[v]) q.push(v);
}
}
for(int i=1;i<=n_;i++)
if(dp[i]==mx)
(ans+=Cnt[i])%=p;
printf("%d\n%lld\n",mx,ans);
}
int main()
{
init();
work();
return 0;
}

2018.7.26

洛谷 P2272 [ZJOI2007]最大半连通子图 解题报告的更多相关文章

  1. BZOJ1093或洛谷2272 [ZJOI2007]最大半连通子图

    BZOJ原题链接 洛谷原题链接 和 Going from u to v or from v to u?(题解)这道题类似,只不过是求最大子图的大小和个数而已. 一样用\(tarjan\)求强连通分量, ...

  2. Luogu P2272 [ZJOI2007]最大半连通子图(Tarjan+dp)

    P2272 [ZJOI2007]最大半连通子图 题意 题目描述 一个有向图\(G=(V,E)\)称为半连通的\((Semi-Connected)\),如果满足:\(\forall u,v\in V\) ...

  3. luogu P2272 [ZJOI2007]最大半连通子图

    题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若 ...

  4. P2272 [ZJOI2007]最大半连通子图 tarjan+DP

    思路:$tarjan+DP$ 提交:1次 题解:首先对于一个强连通分量一定是一个半连通分量,并且形成的半连通分量的大小一定是它的$size$,所以我们先缩点. 这样,我们相当于要在新的$DAG$上找一 ...

  5. P2272 [ZJOI2007]最大半连通子图

    思路 tarjan的题目 注意是要选出一个点集而不是边集 第一问就是缩点之后最长链,第二问就是有多少个最长链,注意缩点后连边要去重(不然一个链的方案可能会被统计多次) 代码 #include < ...

  6. 题解 P2272 【[ZJOI2007]最大半连通子图】

    P2272 [ZJOI2007]最大半连通子图 萌新初学Tarjan,在<信息学奥赛一本通-提高篇>中看到这题,看到题解不多,便想发布一篇较为清新简洁的题解.--第5道紫题 题目大意: 定 ...

  7. BZOJ 1093 [ZJOI2007] 最大半连通子图(强联通缩点+DP)

    题目大意 题目是图片形式的,就简要说下题意算了 一个有向图 G=(V, E) 称为半连通的(Semi-Connected),如果满足图中任意两点 u v,存在一条从 u 到 v 的路径或者从 v 到 ...

  8. BZOJ 1093 [ZJOI2007]最大半连通子图

    1093: [ZJOI2007]最大半连通子图 Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 1986  Solved: 802[Submit][St ...

  9. bzoj 1093 [ZJOI2007]最大半连通子图(scc+DP)

    1093: [ZJOI2007]最大半连通子图 Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 2286  Solved: 897[Submit][St ...

随机推荐

  1. debian8+lnmp1.2一键安装+WordPress3.9

    下载并安装LNMP一键安装包 wget -c http://soft.vpser.net/lnmp/lnmp1.2-full.tar.gz && tar zxf lnmp1.2-ful ...

  2. lesson 21 Daniel Mendoza

    lesson 21 Daniel Mendoza bare 赤裸的 :boxers fought with bare fists crude 天然的:crude sugar, crude oil 粗俗 ...

  3. leetcode-数数并说

     数数并说     报数序列是指一个整数序列,按照其中的整数的顺序进行报数,得到下一个数.其前五项如下: 1. 1 2. 11 3. 21 4. 1211 5. 111221 1 被读作  " ...

  4. (python)leetcode刷题笔记05 Longest Palindromic Substring

    5. Longest Palindromic Substring Given a string s, find the longest palindromic substring in s. You ...

  5. 【转】Haml 这货是啥? 附参考

    Haml是一种用来描述任何XHTML web document的标记语言,它是干净,简单的.而且也不用内嵌代码.Haml的职能就是替代那些内嵌代码的page page templating syste ...

  6. 剑指offer-从上往下打印二叉树22

    题目描述 从上往下打印出二叉树的每个节点,同层节点从左至右打印. class Solution: # 返回从上到下每个节点值列表,例:[1,2,3] def PrintFromTopToBottom( ...

  7. 并行程序模拟(Concurrency Simulator, ACM/ICPC World Finals 1991,Uva210)

    任务介绍 你的任务是模拟n个程序的并行运算.(按照输入编号为1~n)的并行执行. 代码实现 #define LOCAL #include<bits/stdc++.h> using name ...

  8. kaldi - Online Audio Server(服务器客户端建立方法-旧版在线解码)

    目录 一.服务器客户端识别系统建立方法 1. Command line to start the server(服务器端启动方式): 2. Command line to start the clie ...

  9. 软工时间-Alpha 冲刺 (2/10)

    队名:起床一起肝活队 组长博客:博客链接 作业博客:班级博客本次作业的链接 组员情况 组员1(队长):白晨曦 过去两天完成了哪些任务 描述: 学习了UI设计软件的使用,了解了项目开发的具体流程. 展示 ...

  10. javaIO--字节流

    流---是指的一组有序的.有气垫和重点的字节集合,是对的护具传输的总称或者抽象. 流采用缓冲区技术,当写一个数据时,系统将数据发送到缓冲区而不是外部设备(如硬盘),当读一个数据时,系统实际是从缓冲区读 ...