接上一篇,那个递推式显然可以用矩阵快速幂优化...自己随便YY了下就出来了,学了一下怎么用LaTeX画公式,LaTeX真是个好东西!嘿嘿嘿

  

  如上图。(刚画错了一发。。。已更新

  然后就可以过V2了

  orz CZL卡常大师,我怎么越卡越慢啊QAQ

#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define ll long long
using namespace std;
const int maxn=,mod=1e9+;
int n,m,k;
int sum[maxn],v[maxn],g[],f[][maxn];
void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
int MOD(int x){return x>=mod?x-mod:x;}
int main()
{
read(n);read(m);k=(int)floor(log(n)/log()+);
for(int i=;i<=n;i++)f[][i]=,sum[i]=sum[i-]+;
v[]=;g[]=n-((n>>)+)+;
for(int i=;i<=k;i++)
{
for(int j=<<(i-);j<=n;j++)f[i][j]=sum[j>>];
for(int j=(n>>)+;j<=n;j++)g[i]=MOD(g[i]+f[i][j]);
sum[(<<(i-))-]=;for(int j=<<(i-);j<=n;j++)sum[j]=MOD(sum[j-]+f[i][j]);
}
for(int i=;i<=m;i++)
{
for(int j=;j<=min(i,k);j++)
v[i]=MOD(v[i]+(1ll*g[j]*v[i-j]%mod));
}
printf("%d\n",v[m]);
return ;
}

51nod 1197 字符串的数量 V2(矩阵快速幂+数论?)的更多相关文章

  1. [CQOI2018]交错序列 (矩阵快速幂,数论)

    [CQOI2018]交错序列 \(solution:\) 这一题出得真的很好,将原本一道矩阵快速幂硬生生加入组合数的标签,还那么没有违和感,那么让人看不出来.所以做这道题必须先知道(矩阵快速幂及如何构 ...

  2. HDU6395 Sequence(矩阵快速幂+数论分块)

    题意: F(1)=A,F(2)=B,F(n)=C*F(n-2)+D*F(n-1)+P/n 给定ABCDPn,求F(n) mod 1e9+7 思路: P/n在一段n里是不变的,可以数论分块,再在每一段里 ...

  3. 51nod 算法马拉松18 B 非010串 矩阵快速幂

    非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...

  4. 51nod 1113 矩阵快速幂

    题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...

  5. 【BZOJ4002】[JLOI2015]有意义的字符串(数论,矩阵快速幂)

    [BZOJ4002][JLOI2015]有意义的字符串(数论,矩阵快速幂) 题面 BZOJ 洛谷 题解 发现我这种题总是做不动... 令\(A=\frac{b+\sqrt d}{2},B=\frac{ ...

  6. 51nod 1126 矩阵快速幂 水

    有一个序列是这样定义的:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. 给出A,B和N,求f(n)的值. Input 输 ...

  7. luogu3263/bzoj4002 有意义的字符串 (数学+矩阵快速幂)

    首先我们发现$\frac{b+\sqrt{d}}{2}$这个形式好像一元二次方程的求根公式啊(???反正我发现不了) 然后我们又想到虽然这个东西不好求但是$(\frac{b-\sqrt{d}}{2}) ...

  8. BZOJ.4180.字符串计数(后缀自动机 二分 矩阵快速幂/倍增Floyd)

    题目链接 先考虑 假设S确定,使构造S操作次数最小的方案应是:对T建SAM,S在SAM上匹配,如果有S的转移就转移,否则操作数++,回到根节点继续匹配S.即每次操作一定是一次极大匹配. 简单证明:假设 ...

  9. $bzoj1009-HNOI2008$ $GT$考试 字符串$dp$ 矩阵快速幂

    题面描述 阿申准备报名参加\(GT\)考试,准考证号为\(N\)位数\(x_1,x_2,...,x_n\ (0\leq x_i\leq 9)\),他不希望准考证号上出现不吉利的数字. 他的不吉利数字\ ...

随机推荐

  1. Selenium(Python)驱动Firefox浏览器

    我的版本是Firefox Setup 52.7.0.exe+geckodriver-v0.15.0-win64.zip, 把驱动geckodriver.exe放到Python安装目录下, 也可以指定驱 ...

  2. 第四篇 与Flask相关的插件(flask-session、wtforms)

    公司中使用SQL的种方式: 1. 写Django:ORM(关系对象映射), 2. 写Flask和其他:有两种方式: (1) 原生SQL:使用原生SQL有两种选择: A. pymysql (python ...

  3. 使用SpringBoot整合ssm项目

    SpringBoot是什么? Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程. Spring Boot 现在已经成为Java ...

  4. C#使用EF连接PGSql数据库

    前言 由于项目需要,使用到了PGSql数据库,说实话这是第一次接触并且听说PGSql(PostgreSQL)关系型数据库,之前一直使用的都是SqlServer,一头雾水的各种找资源,终于将PGSql与 ...

  5. 文件上传:CommonsMultipartResolver

    一. 简介 CommonsMultipartResolver是基于Apache的Commons FileUpload来实现文件上传功能的,主要作用是配置文件上传的一些属性. 二. 配置 1)依赖Apa ...

  6. 零基础自学人工智能,看这些资料就够了(300G资料免费送)

    为什么有今天这篇? 首先,标题不要太相信,哈哈哈. 本公众号之前已经就人工智能学习的路径.学习方法.经典学习视频等做过完整说明.但是鉴于每个人的基础不同,可能需要额外的学习资料进行辅助.特此,向大家免 ...

  7. 第一次接触FPGA至今,总结的宝贵经验

    从大学时代第一次接触FPGA至今已有10多年的时间,至今记得当初第一次在EDA实验平台上完成数字秒表.抢答器.密码锁等实验时那个兴奋劲.当时由于没有接触到HDL硬件描述语言,设计都是在MAX+plus ...

  8. 最短路径——Dijkstra(简易版)

    简易之处:顶点无序号,只能默认手动输入0,1,2...(没有灵活性) #include <iostream> #include <cstdio> #include <cs ...

  9. StrBlobPtr类——weak_ptr访问vector元素

    #include <iostream> #include <memory> #include <string> #include <initializer_l ...

  10. joomla 出现The file Cache Storage is not supported on this platform;

    错误提示:The file Cache Storage is not supported on this platform:在这个平台上不支持文件缓存存储 出现这样的原因很简单,有两个文件夹不可写,这 ...