POJ1274 The Perfect Stall[二分图最大匹配]
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 23911 | Accepted: 10640 |
Description
Given the preferences of the cows, compute the maximum number of milk-producing assignments of cows to stalls that is possible.
Input
Output
Sample Input
5 5
2 2 5
3 2 3 4
2 1 5
3 1 2 5
1 2
Sample Output
4
Source
裸hungary
http://www.renfei.org/blog/bipartite-matching.html匹配:在图论中,一个「匹配」(matching)是一个边的集合,其中任意两条边都没有公共顶点。最大匹配:一个图所有匹配中,所含匹配边数最多的匹配,称为这个图的最大匹配。
完美匹配:如果一个图的某个匹配中,所有的顶点都是匹配点,那么它就是一个完美匹配。显然,完美匹配一定是最大匹配(完美匹配的任何一个点都已经匹配,添加一条新的匹配边一定会与已有的匹配边冲突)。但并非每个图都存在完美匹配。
交替路:从一个未匹配点出发,依次经过非匹配边、匹配边、非匹配边...形成的路径叫交替路。
增广路:从一个未匹配点出发,走交替路,如果途径另一个未匹配点(出发的点不算),则这条交替路称为增广路(agumenting path)。
最大匹配数:最大匹配的匹配边的数目
最小点覆盖数:选取最少的点,使任意一条边至少有一个端点被选择
最大独立数:选取最多的点,使任意所选两点均不相连
最小路径覆盖数:对于一个 DAG(有向无环图),选取最少条路径,使得每个顶点属于且仅属于一条路径。路径长可以为 0(即单个点)。定理1:最大匹配数 = 最小点覆盖数(这是 Konig 定理)
定理2:最大匹配数 = 最大独立数
定理3:最小路径覆盖数 = 顶点数 - 最大匹配数
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int N=;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,m,s,u,v;
struct edge{
int v,ne;
}e[N*N<<];
int h[N],cnt=;
inline void ins(int u,int v){
cnt++;
e[cnt].v=v;e[cnt].ne=h[u];h[u]=cnt;
}
int vis[N],le[N];
bool find(int u){
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v;
if(!vis[v]){
vis[v]=;
if(!le[v]||find(le[v])){
le[v]=u;
return true;
}
}
}
return false;
}
int ans=;
void hungary(){
memset(le,,sizeof(le));
for(int i=;i<=n;i++){
memset(vis,,sizeof(vis));
if(find(i)) ans++;
}
}
int main(){
while(scanf("%d%d",&n,&m)!=EOF){
cnt=;
memset(h,,sizeof(h));
for(int i=;i<=n;i++){
s=read();
while(s--){v=read();ins(i,v);}
}
ans=;
hungary();
printf("%d\n",ans);
}
}
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int N=;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,m,s,u,v,g[N][N];
int vis[N],le[N];
bool find(int u){
for(int i=;i<=m;i++) if(g[u][i]&&!vis[i]){
vis[i]=;
if(!le[i]||find(le[i])){
le[i]=u;
return true;
}
}
return false;
}
int ans=;
void hungary(){
memset(le,,sizeof(le));
for(int i=;i<=n;i++){
memset(vis,,sizeof(vis));
if(find(i)) ans++;
}
}
int main(){
while(scanf("%d%d",&n,&m)!=EOF){
memset(g,,sizeof(g));
for(int i=;i<=n;i++){
s=read();
while(s--){v=read();g[i][v]=;}
}
ans=;
hungary();
printf("%d\n",ans);
}
}
POJ1274 The Perfect Stall[二分图最大匹配]的更多相关文章
- POJ1274 The Perfect Stall[二分图最大匹配 Hungary]【学习笔记】
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 23911 Accepted: 106 ...
- [POJ] 1274 The Perfect Stall(二分图最大匹配)
题目地址:http://poj.org/problem?id=1274 把每个奶牛ci向它喜欢的畜栏vi连边建图.那么求最大安排数就变成求二分图最大匹配数. #include<cstdio> ...
- poj1274 The Perfect Stall (二分最大匹配)
Description Farmer John completed his new barn just last week, complete with all the latest milking ...
- POJ1274 The Perfect Stall 二分图,匈牙利算法
N头牛,M个畜栏,每头牛仅仅喜欢当中的某几个畜栏,可是一个畜栏仅仅能有一仅仅牛拥有,问最多能够有多少仅仅牛拥有畜栏. 典型的指派型问题,用二分图匹配来做,求最大二分图匹配能够用最大流算法,也能够用匈牙 ...
- POJ1274 The Perfect Stall【二部图最大匹配】
主题链接: id=1274">http://poj.org/problem? id=1274 题目大意: 有N头奶牛(编号1~N)和M个牛棚(编号1~M). 每头牛仅仅可产一次奶.每一 ...
- POJ1274 The Perfect Stall
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 25739 Accepted: 114 ...
- POJ1274_The Perfect Stall(二部图最大匹配)
解决报告 http://blog.csdn.net/juncoder/article/details/38136193 id=1274">题目传送门 题意: n头m个机器,求最大匹配. ...
- 洛谷P1894 [USACO4.2]完美的牛栏The Perfect Stall(二分图)
P1894 [USACO4.2]完美的牛栏The Perfect Stall 题目描述 农夫约翰上个星期刚刚建好了他的新牛棚,他使用了最新的挤奶技术.不幸的是,由于工程问题,每个牛栏都不一样.第一个星 ...
- poj--1274--The Perfect Stall(最大匹配)
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 21665 Accepted: 973 ...
随机推荐
- C# ~ 从 委托事件 到 观察者模式 - Observer
委托和事件的部分基础知识可参见 C#/.NET 基础学习 之 [委托-事件] 部分: 参考 [1]. 初识事件 到 自定义事件: [2]. 从类型不安全的委托 到 类型安全的事件: [3]. 函数指针 ...
- sqlserver 多库查询 sp_addlinkedserver使用方法(添加链接服务器)
sqlserver 多库查询 sp_addlinkedserver使用方法(添加链接服务器) 我们日常使用SQL Server数据库时,经常遇到需要在实例Instance01中跨实例访问Instanc ...
- C#动态编译
C#提供了DynamicObject和IDynamicMetaObjectProvider两种方式实现动态类型,动态类型的好处是类型的公有接口可以在运行时改变. 创建动态类型最简单的方法就是继承Dyn ...
- Wijmo 2016 V3发布
互操作性增强 Wijmo继续扩展互操作性包括Angular 2.ReactJS和VueJS. 模块支持 Wijmo最初设计为单个模块. 一切都存储在Wijmo命名空间.Wijmo现在包含很多不同的模块 ...
- JFreechart 在linux下不显示及中文乱码问题
一.使用JFreeChart建的报表,在window下能正常显示,但是放到linux下就报错,而且有时候会把tomcat挂掉, 原因是jfreechart的在linux系统中需要访问java awt库 ...
- fastq-dump 报错 解决方案
命令行: ~/tools/sratoolkit/sratoolkit.2.3.2-5-centos_linux64/bin/fastq-dump --split-spot --gzip rhesus_ ...
- 对hashcode、equals的理解
1.首先hashcode和equals都是java每个对象都存在的方法,因为他们两是Object的方法. 2.hashcode方法默认返回的是该对象内存地址的哈希码,然而你会发现,Object类中没有 ...
- 从零开始学 Java - Spring 使用 Quartz 任务调度定时器
生活的味道 睁开眼看一看窗外的阳光,伸一个懒腰,拿起放在床一旁的水白开水,甜甜的味道,晃着尾巴东张西望的猫猫,在窗台上舞蹈.你向生活微笑,生活也向你微笑. 请你不要询问我的未来,这有些可笑.你问我你是 ...
- Maven命令行使用:mvn clean compile(编译)
先把命令行切换到Maven项目的根目录,比如:/d/xxxwork/java/maven-test,然后执行命令: mvn clean compile 执行结果如下: [INFO] Scanning ...
- $.extend()的深拷贝和浅拷贝详细讲解
版权声明:作者原创,转载请注明出处! 语法:jQuery.extend( [deep ], target, object1 [, objectN ] ) 描述: 将两个或更多对象的内容合并到第一个对象 ...