【NeurlPS2019】Positional Normalization 位置归一化
作者提出,当前的BatchNorm, GroupNorm, InstanceNorm在空间层面归一化信息,同时丢弃了统计值。作者认为这些统计信息中包含重要的信息,如果有效利用,可以提高GAN和分类网络的性能。
在这篇论文中,作者提出PONO方法,在通道层面进行归一化,与BN的对比如下所示。实际操作起来,并不是直接归一化,要复杂一些,下面进行详细说明。

如下图所示,对于conv-deconv的网络,前层网络的结构信息\(\mu\)和\(\sigma\)作为新特征的参数\(\beta\)和\(\gamma\)传到后层,以提供图像中的结构信息,作者把这种算法叫做PONO-MS。可以看出,这种操作和 skip-connection 非常相似。

同时,考虑到各种任务的不同,作者也提出了PONO-DMS,如下图所示。将\(\mu\)和\(\sigma\)输入一个简单的ConvNet中自适应学习,得到更好的参数。

作者在实验时,主要集中在Image Translation,结果表明,加入 PONO-MS 可以有效的提高网络性能。同时,PONO-MS也能有效使一些failure的case起死回生。比如,分别提取猫和狗的结构信息和类别信息,旨在于生成有着猫的结构的狗和有着狗的结构的猫(如图所示)。当我们用小数量级dataset来训练网络的时候我们可以看到网络无法学习到我们需要的信息,造成训练失败。而令人惊讶的是,当加入PONO-MS之后,网络可以成功学习到对应信息,使一个失败的例子能够起死回生。

PONO目前已被应用于生成网络(GAN,图像去雾等),语义分割,图像分类等应用当中。具体请参见Github:https://github.com/Boyiliee/PONO
其中最近该研究团队将PONO应用于数据增强达到了非常好的效果,具体可参照:https://github.com/Boyiliee/MoEx
【NeurlPS2019】Positional Normalization 位置归一化的更多相关文章
- 【转】Standardization(标准化)和Normalization(归一化)的区别
Standardization(标准化)和Normalization(归一化)的区别 https://blog.csdn.net/Dhuang159/article/details/83627146 ...
- Batch Normalization批量归一化
BN的深度理解:https://www.cnblogs.com/guoyaohua/p/8724433.html BN: BN的意义:在激活函数之前将输入归一化到高斯分布,控制到激活函数的敏感区域,避 ...
- 【算法】Normalization
Normalization(归一化) 写这一篇的原因是以前只知道一个Batch Normalization,自以为懂了.结果最近看文章,又发现一个Layer Normalization,一下就懵逼了. ...
- Machine Learning系列--归一化方法总结
一.数据的标准化(normalization)和归一化 数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间.在某些比较和评价的指标处理中经常会用到,去除数据的单位限 ...
- [DeeplearningAI笔记]Batch NormalizationBN算法Batch归一化_02_3.4-3.7
Batch Normalization Batch归一化 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.4正则化网络的激活函数 Batch归一化会使你的参数搜索问题变得很容易,使神经网络 ...
- caffe︱深度学习参数调优杂记+caffe训练时的问题+dropout/batch Normalization
一.深度学习中常用的调节参数 本节为笔者上课笔记(CDA深度学习实战课程第一期) 1.学习率 步长的选择:你走的距离长短,越短当然不会错过,但是耗时间.步长的选择比较麻烦.步长越小,越容易得到局部最优 ...
- Machine Learning--week2 多元线性回归、梯度下降改进、特征缩放、均值归一化、多项式回归、正规方程与设计矩阵
对于multiple features 的问题(设有n个feature),hypothesis 应该改写成 \[ \mathit{h} _{\theta}(x) = \theta_{0} + \the ...
- 激活函数,Batch Normalization和Dropout
神经网络中还有一些激活函数,池化函数,正则化和归一化函数等.需要详细看看,啃一啃吧.. 1. 激活函数 1.1 激活函数作用 在生物的神经传导中,神经元接受多个神经的输入电位,当电位超过一定值时,该神 ...
- 【编程开发】opencv实现对Mat中某一列或某一行的元素进行normalization
[编程开发]opencv实现对Mat中某一列或某一行的元素进行normalization 标签: [编程开发] [机器学习] 声明:引用请注明出处http://blog.csdn.net/lg1259 ...
随机推荐
- 入门大数据---Spark_Streaming整合Kafka
一.版本说明 Spark 针对 Kafka 的不同版本,提供了两套整合方案:spark-streaming-kafka-0-8 和 spark-streaming-kafka-0-10,其主要区别如下 ...
- Net链接Sql Server语法
1.登录名.密码链接 </system.web> <appSettings> <!--<add key="MSSqlConnectionString&qu ...
- (私人收藏)2019科协WER解决方案
2019科协WER解决方案 含地图,解决程序,详细规则,搭建方案EV3;乐高;机器人比赛;能力风暴;WER https://pan.baidu.com/s/16sdFmM49bPijYw55i8ox1 ...
- 移动端1px像素解决方式,从1px像素问题剖析像素及viewport
在移动端web开发过程中,如果你对边框设置border:1px,会发现,边框在某些手机机型上面显示的1px比实际感觉会变粗,这也就是1像素问题.如下图是对桌面浏览器和移动端border设置1px的比较 ...
- 01-springboot整合elasticsearch初识
1.elasticsearch 1.es简介 Elasticsearch 是一个分布式.高扩展.高实时的搜索与数据分析引擎.它能很方便的使大量数据具有搜索.分析和探索的能力.充分利用Elas ...
- React学习路径快速进入AntDesignPro开发
好久没有写博客,有空再来记一下.最近在整些小东西,需要用到前端,最开始本着对nodejs的动不动几百兆插件的恐惧, 于是使用自己以前写的 OSS.Pjax 小框架(类似国外的Pjax,利用pushSt ...
- 显示IP地址的命令
显示IP地址的命令 Centos7默认显示IP地址的命令 #获取所有网卡的IP地址 [root@clf ~]# ip a1: lo: <LOOPBACK,UP,LOWER_UP ...
- MRCTF 2020-“TiKi小组”
题目状态: OPEN - 正在试图解这道题CLOSED - 这道题还没有打开SOLVED - 解决了!鼓掌撒花! 赛事信息 Flag格式:MRCTF{}起止时间:2020-03-27 18:00:00 ...
- Edit Static Web File Http Header Metadata of AWS S3 from SDK | SDK编程方式编辑储存在AWS S3中Web类文件的Http Header元数据
1.Motivation | 起因 A requirement from the product department requires download image from AWS S3 buck ...
- 关于jwt6.0.0版本algorithms should be set报错的解决方案
2020.7.7日jwt更新之后,安装的express-jwt模块会默认为6.0.0版本,我将之前的auth.js文件引入时控制台报错,提示algorithms should be set,中文译为应 ...