问题描述
  给定一个n*n的棋盘,棋盘中有一些位置不能放皇后。现在要向棋盘中放入n个黑皇后和n个白皇后,使任意的两个黑皇后都不在同一行、同一列或同一条对角线上,任意的两个白皇后都不在同一行、同一列或同一条对角线上。问总共有多少种放法?n小于等于8。
输入格式
  输入的第一行为一个整数n,表示棋盘的大小。
  接下来n行,每行n个0或1的整数,如果一个整数为1,表示对应的位置可以放皇后,如果一个整数为0,表示对应的位置不可以放皇后。
输出格式
  输出一个整数,表示总共有多少种放法。
样例输入
4
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
样例输出
2
样例输入
4
1 0 1 1
1 1 1 1
1 1 1 1
1 1 1 1
样例输出
0
题解:类似于八皇后问题,就递归先一列一列判断黑色判完之后判白色,等白色判完之后ans+1
ac代码:
#include<iostream>
#include<string>
#include<algorithm>
#include<cmath>
#include<cstdlib>
using namespace std;
int Q[10][10],n,b[10]={0},w[10]={0},ans=0;
void dfs_w(int cnt)
{
    if(cnt==n+1) ans++;
    for(int i=1;i<=n;i++)
    {
        int flag=0;
        if(Q[cnt][i]==0||b[cnt]==i)//判断是否黑色占用
            continue;
        w[cnt]=i;
        for(int k=1;k<cnt;k++)
            if(w[k]==w[cnt]||abs(k-cnt)==abs(w[k]-w[cnt]))
            {flag=1;break;}
        if(!flag) dfs_w(cnt+1);
    }
}
void dfs_b(int cnt)//行数
{
    if(cnt==n+1) dfs_w(1);
    for(int j=1;j<=n;j++)
    {
        int flag=0;
        if(Q[cnt][j]==0) continue;
        b[cnt]=j;
        for(int k=1;k<cnt;k++)
            if(b[k]==b[cnt]||abs(cnt-k)==abs(b[cnt]-b[k]))
                {flag=1;break;}
        if(flag==0)
          dfs_b(cnt+1);
    }
}
int main()
{
    cin>>n;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
        cin>>Q[i][j];
    dfs_b(1);
    cout<<ans<<endl;
    return 0;
}

2n皇后问题-------递归 暴力求解题与分布讨论题的更多相关文章

  1. F - Maximal Intersection --------暴力求解题

    You are given n segments on a number line; each endpoint of every segment has integer coordinates. S ...

  2. 蓝桥--2n皇后问题(递归)--搬运+整理+注释

    N皇后问题: #include <iostream> #include <cmath> using namespace std; int N; ];//用来存放算好的皇后位置. ...

  3. 对八皇后的补充以及自己解决2n皇后问题代码

    有了上次的八皇后的基础.这次准备解决2n皇后的问题,: //问题描述// 给定一个n*n的棋盘,棋盘中有一些位置不能放皇后.现在要向棋盘中放入n个黑皇后和n个白皇后,使任意的两个黑皇后都不在同一行./ ...

  4. 算法基础_递归_求杨辉三角第m行第n个数字

    问题描述: 算法基础_递归_求杨辉三角第m行第n个数字(m,n都从0开始) 解题源代码(这里打印出的是杨辉三角某一层的所有数字,没用大数,所以有上限,这里只写基本逻辑,要符合题意的话,把循环去掉就好) ...

  5. C语言 · 2n皇后问题

    基础练习 2n皇后问题   时间限制:1.0s   内存限制:512.0MB        锦囊1 搜索算法. 锦囊2 先搜索n皇后的解,在拼凑成2n皇后的解. 问题描述 给定一个n*n的棋盘,棋盘中 ...

  6. 计蒜课--2n皇后、n皇后的解法(一般操作hhh)

    给定一个 n*nn∗n 的棋盘,棋盘中有一些位置不能放皇后.现在要向棋盘中放入 nn 个黑皇后和 nn个白皇后,使任意的两个黑皇后都不在同一行.同一列或同一条斜线(包括正负斜线)上,任意的两个白皇后都 ...

  7. 2n皇后 - 回溯

    题目地址:http://www.51cpc.com/web/problem.php?id=1172 Summarize: 1. 递归回溯: 2. 先扫完一种皇后,再扫描另一种: 3. 循环输入: 4. ...

  8. Java实现 蓝桥杯VIP 基础练习 2n皇后问题

    基础练习 2n皇后问题 时间限制:1.0s 内存限制:512.0MB 问题描述 给定一个n*n的棋盘,棋盘中有一些位置不能放皇后.现在要向棋盘中放入n个黑皇后和n个白皇后,使任意的两个黑皇后都不在同一 ...

  9. 蓝桥杯试题 基础练习 2n皇后问题以及n皇后问题

    在学习2n皇后之前,我们应该认识一下n皇后问题: 在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上.你的任务是,对于 ...

随机推荐

  1. django python mange.py runserver 源码

    django python mange.py runserver 源码 入 口 mange.py文件 execute_from_command_line函数 输入参数为['manage.py', 'r ...

  2. Spring IoC bean 的创建(上)

    前言 本系列全部基于 Spring 5.2.2.BUILD-SNAPSHOT 版本.因为 Spring 整个体系太过于庞大,所以只会进行关键部分的源码解析. 本篇文章主要介绍 Spring IoC 容 ...

  3. python 给视频添加马赛克

    用法: 1. 创建空文件夹:imgs 2. 将倒数第三行中的"222056.mov"改为你的视频路径,如:"a.mov" 3. 运行以下代码 4. 稍等片刻,鼠 ...

  4. spring bean post processor

    相关文章 Spring 整体架构 编译Spring5.2.0源码 Spring-资源加载 Spring 容器的初始化 Spring-AliasRegistry Spring 获取单例流程(一) Spr ...

  5. PreparedStatement 防止sql注入 练习

    使用的数据库 MariaDB 10.5.4版本   端口1054     数据库为jt_db,表 为user 数据库的建表和插入相关数据代码: create table user( id int pr ...

  6. Python——格式化GMT时间

    1.背景 最近在做视频上传去获取大小.时间的功能,视频是存在金山云的,由于金山sdk接口用例执行后返回的结果中的时间是http头部时间,时间格式为‘Tue, 08 May 2018 06:17:00 ...

  7. 方正璞华Java面试总结(武汉)

    方正璞华Java面试总结(武汉) 现在社会急缺复合型人才,计算机与日语的结合,具备这两种能力的人不愁工作,最后他们大多到的也是日企,甚至到日本去工作.至今为止接触的日企有光庭.方正璞华.先锋·商泰.英 ...

  8. 爬虫01 /jupyter、爬虫概述、requests基本使用

    爬虫02 /jupyter.爬虫概述.requests基本使用 目录 爬虫02 /jupyter.爬虫概述.requests基本使用 1. jupyter的基本使用 2. 爬虫概述 3. reques ...

  9. Django之模型的_meta属性

    Python有反射机制,Django也不例外,也有很好的反射机制,每个Django模型都有一个属性_meta,_meta也有属性和方法,这些属性和方法反射出了模型的一些特性,如果_meta用的好的话, ...

  10. CRM【第三篇】: crm业务

    1. 项目背景 crm系统是某某教育公司正在使用的项目,系统主要为 销售部.运营部.教质部门提供管理平台,随着公司规模的扩展,对公司员工的业务信息量化以及信息化建设越来越重要. crm系统为不同角色的 ...