状压DP之排列perm
题目
[SCOI2007]排列
给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0)。例如123434有90种排列能被2整除,其中末位为2的有30种,末位为4的有60种。
输入格式
输入第一行是一个整数T,表示测试数据的个数,以下每行一组s和d,中间用空格隔开。s保证只包含数字0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
输出格式
每个数据仅一行,表示能被d整除的排列的个数。
样例
样例输入
7
000 1
001 1
1234567890 1
123434 2
1234 7
12345 17
12345678 29
样例输出
1
3
3628800
90
3
6
1398
数据范围与提示
在前三个例子中,排列分别有1, 3, 3628800种,它们都是1的倍数。
100%的数据满足:s的长度不超过10, 1<=d<=1000, 1<=T<=15。
思路
- 这道题棘手的地方是如何将数转化为二进制数存储状态,所以,我们先不管他所在数位的具体数目是多少,用二进制记录状态(1代表有,0代表没有),就很明了了,再来考虑数的问题,开一个和原字符组长度相等的数组,记录相应数位的数大小,我们定义DP数组\(F[i][j]\)代表状态\(i\)下余数为\(j\)的排序个数,\(cnt[i]\)记录\(i\)出现次数(作用下文说明),用\(a[i]\)代表原字符串相应\(i-1\)位置上的数的大小;
- 接着我们在第一层枚举状态\(i\),第二层枚举余数\(k\),在此加判断,如果\(f[i][k]\)为0,不需要进行以下操作,为0叠加无效,第三层枚举在\(i\)状态后面插入的数字\(j\),如果\(j\)位的数字没有出现,则进行转移 \(f[(i|(1<<j))][(k*10+a[j+1])%mod] += f[i][k]\),上一状态的最优借叠加上来。
- 还有一点就是数字重复,这时候就体现\(cnt\)的作用了,记录某个数字出现的次数,这些数字相互交换位置答案一样,对于数字\(i\),出现\(cnt[i]\)次,那么有\(A^{cnt[i]}_{cnt[i]}\)重复,要用\(f[lim-1][0]\)除去,注意判零!!!(还有一种去重方法,详细见<刘某>)
上代码
#include<bits/stdc++.h>
using namespace std;
const int maxn=1<<11,maxm=1000+10;
int f[maxn][maxm];//f[i][j]表示状态i余数为j的排序个数
int T,mod;
int a[maxn],cnt[maxn];//cnt记录某个数i出现的次数
char s[15];
int J[]={0,1,2,6,24,120,720,5040,40320,362880,3628800};
int main(){
scanf("%d",&T);
while(T--){
memset(cnt, 0, sizeof(cnt));//一定记得初始化
memset(f, 0, sizeof(f));
scanf("%s%d",s,&mod);
int len=strlen(s);
for(int i=0;i<len;i++){
a[i+1]=s[i]-'0';
cnt[a[i+1]]++;//记录a[i+1]出现次数
}
int lim=1<<len;//记录界限
f[0][0]=1;//初始化临界状态,0状态下余数为0的有1种情况
for(int i=0;i<lim;i++){//枚举状态
for(int k=0;k<mod;k++){//枚举余数
if(f[i][k]){//假如没有跳过
for(int j=0; j<len; j++)//枚举插入的数字
if( (i & (1<<j)) == 0 )//无交集
f[(i|(1<<j))][(k*10+a[j+1])%mod] += f[i][k];//叠加
}
}
}
int ans=f[lim-1][0];
for(int i=0; i<=9; i++) if( cnt[i] ) ans /= J[cnt[i]];//去重
cout<<ans<<endl;
}
}
状压DP之排列perm的更多相关文章
- [BZOJ 1072] [SCOI2007] 排列perm 【状压DP】
题目链接:BZOJ 1072 这道题使用 C++ STL 的 next_permutation() 函数直接暴力就可以AC .(使用 Set 判断是否重复) 代码如下: #include <io ...
- BZOJ1072 排列perm 【状压dp】
Description 给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0).例如123434有90种排列能 被2整除,其中末位为2的有30种,末位为4的有60种. Inpu ...
- B1072 [SCOI2007]排列perm 状压dp
很简单的状压dp,但是有一个事,就是...我数组开大了一点,然后每次memset就会T,然后开小就好了!!!震惊!以后小心点这个问题. 题干: Description 给一个数字串s和正整数d, 统计 ...
- 排列perm HYSBZ - 1072(状压dp/暴力)
Description 给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0).例如123434有90种排列能被2整除,其中末位为2的有30种,末位为4的有60种. Input ...
- 「状压DP」「暴力搜索」排列perm
「状压DP」「暴力搜索」排列 题目描述: 题目描述 给一个数字串 s 和正整数 d, 统计 sss 有多少种不同的排列能被 d 整除(可以有前导 0).例如 123434 有 90 种排列能被 2 整 ...
- 【BZOJ1072】【SCOI2007】排列 [状压DP]
排列 Time Limit: 10 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description 给一个数字串s和正整数d, 统计s有多 ...
- 暑假集训Day 4 P4163 [SCOI2007]排列 (状压dp)
状压dp (看到s的长度不超过10就很容易想到是状压dp了 但是这个题的状态转移方程比较特殊) 题目大意 给一个数字串 s 和正整数 d, 统计 s 有多少种不同的排列能被 d 整除(可以有前导 0) ...
- K - Painful Bases 状压dp
Painful Bases LightOJ - 1021 这个题目一开始看,感觉有点像数位dp,但是因为是最多有16进制,因为限制了每一个数字都不同最多就有16个数. 所以可以用状压dp,看网上题解是 ...
- HDU5816 Hearthstone(状压DP)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5816 Description Hearthstone is an online collec ...
随机推荐
- DDD之4聚合和聚合根
聚合就是归类的意思,把同类事物统一处理: 聚合根也就是最抽象,最普遍的特性: 背景 领域建模的过程回顾: 那么问题来了? 为什么要在限界上下文和实体之间增加聚合和聚合根的概念,即作用是什么? 如何设计 ...
- jdbc+mysql常见报错总结
1.The server time zone value '�й���ʱ��' is unrecognized or represents more than one time zone. You ...
- 开发者大赛 | aelf轻型DApp开发训练大赛结果公布!
6月9日,由aelf基金会发起的轻型DApp开发训练大赛圆满收官.本次训练赛基于aelf公开测试网展开,主要针对轻型DApp,旨在激励更多的开发者参与到aelf生态中来. 活动于4月21日上线后,ae ...
- lei muban
#include<iostream> using namespace std; template <typename T> class Operator{ public: T ...
- <Android> Location Service 分析
由于各种原因,老师希望我学习Android系统源码以应对可能参与的项目.我只好深入曹营,刺探军情了. 定位服务是手机上最常用的功能之一,据说也是相对比较简单的服务,所以从这里入手.其他系统服务的架构都 ...
- Java 异常处理的十个建议
前言 Java异常处理的十个建议,希望对大家有帮助~ 本文已上传github: https://github.com/whx123/JavaHome 公众号:捡田螺的小男孩 一.尽量不要使用e.pri ...
- 读Linux高性能服务器编程-12章http服务器源码
title:用线程池实现的http服务器 从main函数看起 解析ip地址(点分制, 端口号) 设置忽略SIGPIPE信号 初始化线程池,池中创建了8个线程,每个线程对应一个work函数 初始化htt ...
- 从新冠疫情出发,漫谈 Gossip 协议
众所周知周知,疫情仍然在全球各地肆虐.据最新数据统计,截至北京时间 2020-05-28,全球累计确诊 5698703 例,累计死亡 352282 例,累计治愈 2415237 例. 从上面的统计数据 ...
- 【Spring】Bean的LifeCycle(生命周期)
菜瓜:水稻,上次说Bean的LifeCycle,还没讲完 水稻:啥?说人话? 菜瓜:spring,bean,生命周期 水稻:哦哦,下次直接说人话.说正事,先从BeanFactory.Applicati ...
- rust 函数-生命周期
记录一下自己理解的生命周期. 每个变量都有自己的生命周期. 在c++里生命周期好比作用域, 小的作用域的可以使用大作用域的变量. 如果把这里的每个作用域取个名,那么就相当于rust里的生命周期注解. ...